5 resultados para User behaviour
em Aston University Research Archive
Resumo:
This thesis describes research on End-User Computing (EUC) in small business in an environment where no Information System (IS) support and expertise are available. The research aims to identify the factors that contribute to EUC Sophistication and understand the extent small firms are capable of developing their own applications. The intention is to assist small firms to adopt EUC, encourage better utilisation of their IT resources and gain the benefits associated with computerisation. The factors examined are derived inductively from previous studies where a model is developed to map these factors with the degree of sophistication associated with IT and EUC. This study attempts to combine the predictive power of quantitative research through surveys with the explanatory power of qualitative research through action-oriented case study. Following critical examination of the literature, a survey of IT Adoption and EUC was conducted. Instruments were then developed to measure EUC and IT Sophistication indexes based on sophistication constructs adapted from previous studies using data from the survey. This is followed by an in-depth action case study involving two small firms to investigate the EUC phenomenon in its real life context. The accumulated findings from these mixed research strategies are used to form the final model of EUC Sophistication in small business. Results of the study suggest both EUC Sophistication and the Presence of EUC in small business are affected by Management Support and Behaviour towards EUC. Additionally EUC Sophistication is also affected by the presence of an EUC Champion. Results are also consistent with respect to the independence between IT Sophistication and EUC Sophistication. The main research contributions include an accumulated knowledge of EUC in small business, the Model of EUC Sophistication, an instrument to measure EUC Sophistication Index for small firms, and a contribution to research methods in IS.
Resumo:
The research was carried out in the Aviation Division of Dunlop Limited and was initiated as a search for more diverse uses for carbon/carbon composites. An assumed communication model of adoption was refined by introducing the concept of a two way search after making cross industry comparisons of supplier and consumer behaviour. This research has examined methods of searching for new uses for advanced technology materials. Two broad approaches were adopted. First, a case history approach investigated materials that had been in a similar oosition to carbon/carbon to see how other material producing firms had tackled the problem. Second, a questionnaire survey among industrialists examined: the role and identity of material decision makers in different sized firms; the effectiveness of various information sources and channels; and the material adoption habits of different industries. The effectiveness of selected information channels was further studied by monitoring the response to publicity given to carbon/carbon. A flow chart has been developed from the results of this research which should help any material producing firm that is contemplating the introduction of a new material to the world market. Further benefit to our understanding of the innovation and adoption of new materials would accrue from work in the followino areas: "micro" type case histories; understanding more fully the role of product champions or promoters; investigating the phase difference between incremental and radical type innovations for materials; examining the relationship between the adoption rate of new materials and the advance of technology; studying the development of cost per unit function methods for material selection; and reviewing the benefits that economy of scale studies can have on material developments. These are all suggested areas for further work.
Resumo:
With the advent of GPS enabled smartphones, an increasing number of users is actively sharing their location through a variety of applications and services. Along with the continuing growth of Location-Based Social Networks (LBSNs), security experts have increasingly warned the public of the dangers of exposing sensitive information such as personal location data. Most importantly, in addition to the geographical coordinates of the user’s location, LBSNs allow easy access to an additional set of characteristics of that location, such as the venue type or popularity. In this paper, we investigate the role of location semantics in the identification of LBSN users. We simulate a scenario in which the attacker’s goal is to reveal the identity of a set of LBSN users by observing their check-in activity. We then propose to answer the following question: what are the types of venues that a malicious user has to monitor to maximize the probability of success? Conversely, when should a user decide whether to make his/her check-in to a location public or not? We perform our study on more than 1 million check-ins distributed over 17 urban regions of the United States. Our analysis shows that different types of venues display different discriminative power in terms of user identity, with most of the venues in the “Residence” category providing the highest re-identification success across the urban regions. Interestingly, we also find that users with a high entropy of their check-ins distribution are not necessarily the hardest to identify, suggesting that it is the collective behaviour of the users’ population that determines the complexity of the identification task, rather than the individual behaviour.
Resumo:
The value of Question Answering (Q&A) communities is dependent on members of the community finding the questions they are most willing and able to answer. This can be difficult in communities with a high volume of questions. Much previous has work attempted to address this problem by recommending questions similar to those already answered. However, this approach disregards the question selection behaviour of the answers and how it is affected by factors such as question recency and reputation. In this paper, we identify the parameters that correlate with such a behaviour by analysing the users' answering patterns in a Q&A community. We then generate a model to predict which question a user is most likely to answer next. We train Learning to Rank (LTR) models to predict question selections using various user, question and thread feature sets. We show that answering behaviour can be predicted with a high level of success, and highlight the particular features that inuence users' question selections.
Resumo:
Value of online Question Answering (QandA) communities is driven by the question-answering behaviour of its members. Finding the questions that members are willing to answer is therefore vital to the effcient operation of such communities. In this paper, we aim to identify the parameters that cor- relate with such behaviours. We train different models and construct effective predictions using various user, question and thread feature sets. We show that answering behaviour can be predicted with a high level of success.