21 resultados para User Experience, Pervasive Gaming, Educational Games, Smart Phones, Ubiquitous Computing
em Aston University Research Archive
Resumo:
Human-computer interaction is a growing field of study in which researchers and professionals aim to understand and evaluate the impact of new technologies on human behavior. With the integration of smart phones, tablets, and other portable devices into everyday life, there is a greater need to understand the influence of such technology on the human experience. Emerging Perspectives on the Design, Use, and Evaluation of Mobile and Handheld Devices is an authoritative reference source consisting of the latest scholarly research and theories from international experts and professionals on the topic of human-computer interaction with mobile devices. Featuring a comprehensive collection of chapters on critical topics in this dynamic field, this publication is an essential reference source for researchers, educators, students, and practitioners interested in the use of mobile and handheld devices and their impact on individuals and society as a whole. This publication features timely, research-based chapters pertaining to topics in the design and evaluation of smart devices including, but not limited to, app stores, category-based interfaces, gamified mobility applications, mobile interaction, mobile learning, pervasive multimodal applications, smartphone interaction, and social media use.
Resumo:
Illiteracy is often associated with people in developing countries. However, an estimated 50 % of adults in a developed country such as Canada lack the literacy skills required to cope with the challenges of today's society; for them, tasks such as reading, understanding, basic arithmetic, and using everyday items are a challenge. Many community-based organizations offer resources and support for these adults, yet overall functional literacy rates are not improving. This is due to a wide range of factors, such as poor retention of adult learners in literacy programs, obstacles in transferring the acquired skills from the classroom to the real life, personal attitudes toward learning, and the stigma of functional illiteracy. In our research we examined the opportunities afforded by personal mobile devices in providing learning and functional support to low-literacy adults. We present the findings of an exploratory study aimed at investigating the reception and adoption of a technological solution for adult learners. ALEX© is a mobile application designed for use both in the classroom and in daily life in order to help low-literacy adults become increasingly literate and independent. Such a solution complements literacy programs by increasing users' motivation and interest in learning, and raising their confidence levels both in their education pursuits and in facing the challenges of their daily lives. We also reflect on the challenges we faced in designing and conducting our research with two user groups (adults enrolled in literacy classes and in an essential skills program) and contrast the educational impact and attitudes toward such technology between these. Our conclusions present the lessons learned from our evaluations and the impact of the studies' specific challenges on the outcome and uptake of such mobile assistive technologies in providing practical support to low-literacy adults in conjunction with literacy and essential skills training. © 2013 Her Majesty the Queen in Right of Canada.
Resumo:
This article explores the different ways that user experience is defined and conceptualized, and the various policy and professional contexts in which emphasis is placed on exploring users’ views. We go on to examine the experience of cancer as a chronic illness and argue that, although there are common features in the experience of cancer and people with chronic illness, the differences are too significant and cancer should not be defined as a chronic condition. We conclude with a consideration of the methodological difficulties of documenting user experience and identify the need for further methodological development.
Resumo:
Market orientation strategies are now expected to be integrated and enacted by firms and governments alike. While private services will surely continue to take the lead in mobile strategy orientation, others such as government and Non-Governmental Organizations (NGOs) are also becoming prominent Mobile Players (m-Players). Enhanced data services through smart phones are raising expectations that governments will finally deliver services that are in line with a consumer ICT lifestyle. To date, it is not certain which form of technological standards will take the lead, e.g. enhanced m-services or traditional Internet-based applications. Yet, with the introduction of interactive applications and fully transactional services via 3G smart phones, the currently untapped segment of the population (without computers) have the potential to gain access to government services at a low cost.
Resumo:
The world is connected by a core network of long-haul optical communication systems that link countries and continents, enabling long-distance phone calls, data-center communications, and the Internet. The demands on information rates have been constantly driven up by applications such as online gaming, high-definition video, and cloud computing. All over the world, end-user connection speeds are being increased by replacing conventional digital subscriber line (DSL) and asymmetric DSL (ADSL) with fiber to the home. Clearly, the capacity of the core network must also increase proportionally. © 1991-2012 IEEE.
Resumo:
This book provides a clear approach to establishing a user involvement system in a healthcare organisation and its potential impact on cancer services. Using a tool kit style approach, drawing on examples of successful past projects and case studies to provide evidence of good practice, it describes how to plan and implement different stages of user involvement, enabling organisations to draw on user experience and expertise to evaluate, develop and improve the quality of service that they provide. Members of regional cancer networks, multidisciplinary cancer care teams, and all those involved in the NHS cancer services will find this toolkit interesting reading.
Resumo:
Background: Remote, non-invasive and objective tests that can be used to support expert diagnosis for Parkinson's disease (PD) are lacking. Methods: Participants underwent baseline in-clinic assessments, including the Unified Parkinson's Disease Rating Scale (UPDRS), and were provided smartphones with an Android operating system that contained a smartphone application that assessed voice, posture, gait, finger tapping, and response time. Participants then took the smart phones home to perform the five tasks four times a day for a month. Once a week participants had a remote (telemedicine) visit with a Parkinson disease specialist in which a modified (excluding assessments of rigidity and balance) UPDRS performed. Using statistical analyses of the five tasks recorded using the smartphone from 10 individuals with PD and 10 controls, we sought to: (1) discriminate whether the participant had PD and (2) predict the modified motor portion of the UPDRS. Results: Twenty participants performed an average of 2.7 tests per day (68.9% adherence) for the study duration (average of 34.4 days) in a home and community setting. The analyses of the five tasks differed between those with Parkinson disease and those without. In discriminating participants with PD from controls, the mean sensitivity was 96.2% (SD 2%) and mean specificity was 96.9% (SD 1.9%). The mean error in predicting the modified motor component of the UPDRS (range 11-34) was 1.26 UPDRS points (SD 0.16). Conclusion: Measuring PD symptoms via a smartphone is feasible and has potential value as a diagnostic support tool.
Resumo:
Product recommender systems are often deployed by e-commerce websites to improve user experience and increase sales. However, recommendation is limited by the product information hosted in those e-commerce sites and is only triggered when users are performing e-commerce activities. In this paper, we develop a novel product recommender system called METIS, a MErchanT Intelligence recommender System, which detects users' purchase intents from their microblogs in near real-time and makes product recommendation based on matching the users' demographic information extracted from their public profiles with product demographics learned from microblogs and online reviews. METIS distinguishes itself from traditional product recommender systems in the following aspects: 1) METIS was developed based on a microblogging service platform. As such, it is not limited by the information available in any specific e-commerce website. In addition, METIS is able to track users' purchase intents in near real-time and make recommendations accordingly. 2) In METIS, product recommendation is framed as a learning to rank problem. Users' characteristics extracted from their public profiles in microblogs and products' demographics learned from both online product reviews and microblogs are fed into learning to rank algorithms for product recommendation. We have evaluated our system in a large dataset crawled from Sina Weibo. The experimental results have verified the feasibility and effectiveness of our system. We have also made a demo version of our system publicly available and have implemented a live system which allows registered users to receive recommendations in real time. © 2014 ACM.
Resumo:
In many e-commerce Web sites, product recommendation is essential to improve user experience and boost sales. Most existing product recommender systems rely on historical transaction records or Web-site-browsing history of consumers in order to accurately predict online users’ preferences for product recommendation. As such, they are constrained by limited information available on specific e-commerce Web sites. With the prolific use of social media platforms, it now becomes possible to extract product demographics from online product reviews and social networks built from microblogs. Moreover, users’ public profiles available on social media often reveal their demographic attributes such as age, gender, and education. In this paper, we propose to leverage the demographic information of both products and users extracted from social media for product recommendation. In specific, we frame recommendation as a learning to rank problem which takes as input the features derived from both product and user demographics. An ensemble method based on the gradient-boosting regression trees is extended to make it suitable for our recommendation task. We have conducted extensive experiments to obtain both quantitative and qualitative evaluation results. Moreover, we have also conducted a user study to gauge the performance of our proposed recommender system in a real-world deployment. All the results show that our system is more effective in generating recommendation results better matching users’ preferences than the competitive baselines.
Resumo:
Objective: To test the practicality and effectiveness of cheap, ubiquitous, consumer-grade smartphones to discriminate Parkinson’s disease (PD) subjects from healthy controls, using self-administered tests of gait and postural sway. Background: Existing tests for the diagnosis of PD are based on subjective neurological examinations, performed in-clinic. Objective movement symptom severity data, collected using widely-accessible technologies such as smartphones, would enable the remote characterization of PD symptoms based on self-administered, behavioral tests. Smartphones, when backed up by interviews using web-based videoconferencing, could make it feasible for expert neurologists to perform diagnostic testing on large numbers of individuals at low cost. However, to date, the compliance rate of testing using smart-phones has not been assessed. Methods: We conducted a one-month controlled study with twenty participants, comprising 10 PD subjects and 10 controls. All participants were provided identical LG Optimus S smartphones, capable of recording tri-axial acceleration. Using these smartphones, patients conducted self-administered, short (less than 5 minute) controlled gait and postural sway tests. We analyzed a wide range of summary measures of gait and postural sway from the accelerometry data. Using statistical machine learning techniques, we identified discriminating patterns in the summary measures in order to distinguish PD subjects from controls. Results: Compliance was high all 20 participants performed an average of 3.1 tests per day for the duration of the study. Using this test data, we demonstrated cross-validated sensitivity of 98% and specificity of 98% in discriminating PD subjects from healthy controls. Conclusions: Using consumer-grade smartphone accelerometers, it is possible to distinguish PD from healthy controls with high accuracy. Since these smartphones are inexpensive (around $30 each) and easily available, and the tests are highly non-invasive and objective, we envisage that this kind of smartphone-based testing could radically increase the reach and effectiveness of experts in diagnosing PD.
Resumo:
A segment selection method controlled by Quality of Experience (QoE) factors for Dynamic Adaptive Streaming over HTTP (DASH) is presented in this paper. Current rate adaption algorithms aim to eliminate buffer underrun events by significantly reducing the code rate when experiencing pauses in replay. In reality, however, viewers may choose to accept a level of buffer underrun in order to achieve an improved level of picture fidelity or to accept the degradation in picture fidelity in order to maintain the service continuity. The proposed rate adaption scheme in our work can maximize the user QoE in terms of both continuity and fidelity (picture quality) in DASH applications. It is shown that using this scheme a high level of quality for streaming services, especially at low packet loss rates, can be achieved. Our scheme can also maintain a best trade-off between continuity-based quality and fidelity-based quality, by determining proper threshold values for the level of quality intended by clients with different quality requirements. In addition, the integration of the rate adaptation mechanism with the scheduling process is investigated in the context of a mobile communication network and related performances are analyzed.
Resumo:
Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.
Resumo:
Ubiquitous computing requires lightweight approaches to coordinating tasks distributed across smart devices. We are currently developing a semantic workflow modelling approach that blends the proven robustness of XPDL with semantics to support proactive behaviour. We illustrate the potential of the model through an example based on mixing a dry martini.
Resumo:
This paper describes the use of Bluetooth and Java-Based technologies in developing a multi-player mobile game in ubiquitous computing, which strongly depends on automatic contextual reconfiguration and context-triggered actions. Our investigation focuses on an extended form of ubiquitous computing which game software developers utilize to develop games for players. We have developed an experimental ubiquitous computing application that provides context-aware services to game server and game players in a mobile distributed computing system. Obviously, contextual services provide useful information in a context-aware system. However, designing a context-aware game is still a daunting task and much theoretical and practical research remains to be done to reach the ubiquitous computing era. In this paper, we present the overall architecture and discuss, in detail, the implementation steps taken to create a Bluetooth and Java based context-aware game. We develop a multi-player game server and prepare the client and server codes in ubiquitous computing, providing adaptive routines to handle connection information requests, logging and context formatting and delivery for automatic contextual reconfiguration and context-triggered actions. © 2010 Binary Information Press.