45 resultados para Usability, MDE, extjs.
em Aston University Research Archive
Resumo:
The goal of semantic search is to improve on traditional search methods by exploiting the semantic metadata. In this paper, we argue that supporting iterative and exploratory search modes is important to the usability of all search systems. We also identify the types of semantic queries the users need to make, the issues concerning the search environment and the problems that are intrinsic to semantic search in particular. We then review the four modes of user interaction in existing semantic search systems, namely keyword-based, form-based, view-based and natural language-based systems. Future development should focus on multimodal search systems, which exploit the advantages of more than one mode of interaction, and on developing the search systems that can search heterogeneous semantic metadata on the open semantic Web.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The growing use of a variety of information systems in crisis management both by non-governmental organizations (NGOs) and emergency management agencies makes the challenges of information sharing and interoperability increasingly important. The use of semantic web technologies is a growing area and is a technology stack specifically suited to these challenges. This paper presents a review of ontologies, vocabularies and taxonomies that are useful in crisis management systems. We identify the different subject areas relevant to crisis management based on a review of the literature. The different ontologies and vocabularies available are analysed in terms of their coverage, design and usability. We also consider the use cases for which they were designed and the degree to which they follow a variety of standards. While providing comprehensive ontologies for the crisis domain is not feasible or desirable there is considerable scope to develop ontologies for the subject areas not currently covered and for the purposes of interoperability.
Resumo:
Mobile technologies have yet to be widely adopted by the Architectural, Engineering, and Construction (AEC) industry despite being one of the major growth areas in computing in recent years. This lack of uptake in the AEC industry is likely due, in large part, to the combination of small screen size and inappropriate interaction demands of current mobile technologies. This paper discusses the scope for multimodal interaction design with a specific focus on speech-based interaction to enhance the suitability of mobile technology use within the AEC industry by broadening the field data input capabilities of such technologies. To investigate the appropriateness of using multimodal technology for field data collection in the AEC industry, we have developed a prototype Multimodal Field Data Entry (MFDE) application. This application, which allows concrete testing technicians to record quality control data in the field, has been designed to support two different modalities of data input speech-based data entry and stylus-based data entry. To compare the effectiveness or usability of, and user preference for, the different input options, we have designed a comprehensive lab-based evaluation of the application. To appropriately reflect the anticipated context of use within the study design, careful consideration had to be given to the key elements of a construction site that would potentially influence a test technician's ability to use the input techniques. These considerations and the resultant evaluation design are discussed in detail in this paper.
Resumo:
AIM: To determine the force needed to extract a drop from a range of current prostaglandin monotherapy eye droppers and how this related to the comfortable and maximum pressure subjects could exert. METHODS: The comfortable and maximum pressure subjects could apply to an eye dropper constructed around a set of cantilevered pressure sensors and mounted above their eye was assessed in 102 subjects (mean 51.2±18.7 years), repeated three times. A load cell amplifier, mounted on a stepper motor controlled linear slide, was constructed and calibrated to test the force required to extract the first three drops from 13 multidose or unidose latanoprost medication eye droppers. RESULTS: The pressure that could be exerted on a dropper comfortably (25.9±17.7 Newtons, range 1.2-87.4) could be exceeded with effort (to 64.8±27.1 Newtons, range 19.9-157.8; F=19.045, p<0.001), and did not differ between repeats (F=0.609, p=0.545). Comfortable and maximum pressures exerted were correlated (r=0.618, p<0.001), neither were influenced strongly by age (r=0.138, p=0.168; r=-0.118, p=0237, respectively), but were lower in women than in men (F=12.757, p=0.001). The force required to expel a drop differed between dropper designs (F=22.528, p<0.001), ranging from 6.4 Newtons to 23.4 Newtons. The force needed to exert successive drops increased (F=36.373, p<0.001) and storing droppers in the fridge further increased the force required (F=7.987, p=0.009). CONCLUSIONS: Prostaglandin monotherapy droppers for glaucoma treatment vary in their resistance to extract a drop and with some a drop could not be comfortably achieved by half the population, which may affect compliance and efficacy.
Resumo:
Volunteered Geographic Information (VGI) represents a growing source of potentially valuable data for many applications, including land cover map validation. It is still an emerging field and many different approaches can be used to take value from VGI, but also many pros and cons are related to its use. Therefore, since it is timely to get an overview of the subject, the aim of this article is to review the use of VGI as reference data for land cover map validation. The main platforms and types of VGI that are used and that are potentially useful are analysed. Since quality is a fundamental issue in map validation, the quality procedures used by the platforms that collect VGI to increase and control data quality are reviewed and a framework for addressing VGI quality assessment is proposed. A review of cases where VGI was used as an additional data source to assist in map validation is made, as well as cases where only VGI was used, indicating the procedures used to assess VGI quality and fitness for use. A discussion and some conclusions are drawn on best practices, future potential and the challenges of the use of VGI for land cover map validation.
Resumo:
This paper describes the use of simulation in a large manufacturing organisation and analyses how it could have been used more fully. Although the benefits from using simulation were clear, it was seen that the technique could have been deployed more effectively by considering the organisational context of the use. From the analysis of the case study, certain recommendations are made on how to maximise the benefits from simulation within the organisation, thereby extending the benefits from what is often a considerable investment in developing a simulation model. Recent developments in simulation software in terms of improvements in usability and integration with organisational data are seen to increase the feasibility of a wider role for simulation if the organisational barriers discussed can be overcome.
Resumo:
In designing new product the ability to retrieve drawings of existing components is important if costs are to be controlled by preventing unnecessary duplication if parts. Component coding and classification systems have been used successfully for these purposes but suffer from high operational costs and poor usability arising directly from the manual nature of the coding process itself. A new version of an existing coding system (CAMAC) has been developed to reduce costs by automatically coding engineering drawings. Usability is improved be supporting searches based on a drawing or sketch of the desired component. Test results from a database of several thousand drawings are presented.
Resumo:
Authors from Burrough (1992) to Heuvelink et al. (2007) have highlighted the importance of GIS frameworks which can handle incomplete knowledge in data inputs, in decision rules and in the geometries and attributes modelled. It is particularly important for this uncertainty to be characterised and quantified when GI data is used for spatial decision making. Despite a substantial and valuable literature on means of representing and encoding uncertainty and its propagation in GI (e.g.,Hunter and Goodchild 1993; Duckham et al. 2001; Couclelis 2003), no framework yet exists to describe and communicate uncertainty in an interoperable way. This limits the usability of Internet resources of geospatial data, which are ever-increasing, based on specifications that provide frameworks for the ‘GeoWeb’ (Botts and Robin 2007; Cox 2006). In this paper we present UncertML, an XML schema which provides a framework for describing uncertainty as it propagates through many applications, including online risk management chains. This uncertainty description ranges from simple summary statistics (e.g., mean and variance) to complex representations such as parametric, multivariate distributions at each point of a regular grid. The philosophy adopted in UncertML is that all data values are inherently uncertain, (i.e., they are random variables, rather than values with defined quality metadata).
Resumo:
Using an optical biosensor based on a dual-peak long-period fiber grating, we have demonstrated the detection of interactions between biomolecules in real time. Silanization of the grating surface was successfully realized for the covalent immobilization of probe DNA, which was subsequently hybridized with the complementary target DNA sequence. It is interesting to note that the DNA biosensor was reusable after being stripped off the hybridized target DNA from the grating surface, demonstrating a function of multiple usability.
Resumo:
Today, speciality use organoclays are being developed for an increasingly large number of specific applications. Many of these, including use in cosmetics, polishes, greases and paints, require that the material be free from abrasive impurities so that the product retains a smooth `feel'. The traditional `wet' method preparation of organoclays inherently removes abrasives naturally present in the parent mineral clay, but it is time-consuming and expensive. The primary objective of this thesis was to explore the alternative `dry' method (which is both quicker and cheaper but which provides no refining of the parent clay) as a process, and to examine the nature of the organoclays produced, for the production of a wide range of commercially usable organophilic clays in a facile way. Natural Wyoming bentonite contains two quite different types of silicate surface (that of the clay mineral montmorillonite and that of a quartz impurity) that may interact with the cationic surfactant added in the `dry' process production of organoclays. However, it is oil shale, and not the quartz, that is chiefly responsible for the abrasive nature of the material, although air refinement in combination with the controlled milling of the bentonite as a pretreatment may offer a route to its removal. Ion exchange of Wyoming bentonite with a long chain quaternary ammonium salt using the `dry' process affords a partially exchanged, 69-78%, organoclay, with a monolayer formation of ammonium ions in the interlayer. Excess ion pairs are sorbed on the silicate surfaces of both the clay mineral and the quartz impurity phases. Such surface sorption is enhanced by the presence of very finely divided, super paramagnetic, Fe2O3 or Fe(O)(OH) contaminating the surfaces of the major mineral components. The sorbed material is labile to washing, and induces a measurable shielding of the 29Si nuclei in both clay and quartz phases in the MAS NMR experiment, due to an anisotropic magnetic susceptibility effect. XRD data for humidified samples reveal the interlamellar regions to be strongly hydrophobic, with the by-product sodium chloride being expelled to the external surfaces. Many organic cations will exchange onto a clay. The tetracationic cyclophane, and multipurpose receptor, cyclobis(paraquat-p-phenylene) undergoes ion exchange onto Wyoming bentonite to form a pillared clay with a very regular gallery height. The major plane of the cyclophane is normal to the silicate surfaces, thus allowing the cavity to remain available for complexation. A series of group VI substituted o-dimethoxybenzenes were introduced, and shown to participate in host/guest interactions with the cyclophane. Evidence is given which suggests that the binding of the host structure to a clay substrate offers advantages, not only of transportability and usability but of stability, to the charge-transfer complex which may prove useful in a variety of commercial applications. The fundamental relationship between particle size, cation exchange capacity and chemical composition of clays was also examined. For Wyoming bentonite the extent of isomorphous substitution increases with decreasing particle size, causing the CEC to similarly increase, although the isomorphous substitution site: edge site ratio remains invarient throughout the particle size range studied.
Resumo:
Safety enforcement practitioners within Europe and marketers, designers or manufacturers of consumer products need to determine compliance with the legal test of "reasonable safety" for consumer goods, to reduce the "risks" of injury to the minimum. To enable freedom of movement of products, a method for safety appraisal is required for use as an "expert" system of hazard analysis by non-experts in safety testing of consumer goods for implementation consistently throughout Europe. Safety testing approaches and the concept of risk assessment and hazard analysis are reviewed in developing a model for appraising consumer product safety which seeks to integrate the human factors contribution of risk assessment, hazard perception, and information processing. The model develops a system of hazard identification, hazard analysis and risk assessment which can be applied to a wide range of consumer products through use of a series of systematic checklists and matrices and applies alternative numerical and graphical methods for calculating a final product safety risk assessment score. It is then applied in its pilot form by selected "volunteer" Trading Standards Departments to a sample of consumer products. A series of questionnaires is used to select participating Trading Standards Departments, to explore the contribution of potential subjective influences, to establish views regarding the usability and reliability of the model and any preferences for the risk assessment scoring system used. The outcome of the two stage hazard analysis and risk assessment process is considered to determine consistency in results of hazard analysis, final decisions regarding the safety of the sample product and to determine any correlation in the decisions made using the model and alternative scoring methods of risk assessment. The research also identifies a number of opportunities for future work, and indicates a number of areas where further work has already begun.
Resumo:
Communication and portability are the two main problems facing the user. An operating system, called PORTOS, was developed to solve these problems for users on dedicated microcomputer systems. Firstly, an interface language was defined, according to the anticipated requirements and behaviour of its potential users. Secondly, the PORTOS operating system was developed as a processor for this language. The system is currently running on two minicomputers of highly different architectures. PORTOS achieves its portability through its high-level design, and implementation in CORAL66. The interface language consists of a set of user cotnmands and system responses. Although only a subset has been implemented, owing to time and manpower constraints, promising results were achieved regarding the usability of the language, and its portability.