3 resultados para Urokinase-Type Plasminogen Activator
em Aston University Research Archive
Resumo:
Background - Our previous studies showed that the direct injection of an adenovirus construct expressing urokinase-type plasminogen activator (uPA) into experimental venous thrombi significantly reduces thrombus weight. The systemic use of adenovirus vectors is limited by inherent hepatic tropism and inflammatory response. As macrophages are recruited into venous thrombi, it is reasonable to speculate that these cells could be used to target the adenovirus uPA (ad-uPA) gene construct to the thrombus. The aims of this study were to determine whether macrophages transduced with ad-uPA have increased fibrinolytic activity and whether systemic injection of transduced cells could be used to target uPA expression to the thrombus and reduce its size. Methods - The effect of up-regulating uPA was examined in an immortalized macrophage cell line (MM6) and macrophages differentiated from human blood monocyte-derived macrophages (HBMMs). Cells were infected with ad-uPA or blank control virus (ad-blank). Fibrinolytic mediator expression, cell viability, and cytokine expression were measured by activity assays and enzyme-linked immunosorbent assays. Monocyte migration was measured using a modified Boyden chamber assay. A model of venous thrombosis was developed and characterized in mice with severe combined immunodeficiency (SCID). This model was used to study whether systemically administered macrophages over-expressing uPA reduced thrombus size. Uptake of HBMMs into the thrombus induced in these mice was confirmed by a combination of PKH2-labeled cell tracking and colocalization with human leukocyte antigen (HLA) by immunohistology. Results - Compared with ad-blank, treated HBMMs transduction with ad-uPA increased uPA production by >1000-fold (P = .003), uPA activity by 150-fold (P = .0001), and soluble uPA receptor (uPAR) by almost twofold (P = .043). Expression of plasminogen activator inhibitor (PAI-1) and PAI-2 was decreased by about twofold (P = .011) and threefold (P = .005), respectively. Up-regulation of uPA had no effect on cell viability or inflammatory cytokine production compared with ad-blank or untreated cells. Ad-uPA transduction increased the migration rate of HBMMs (about 20%, P = .03) and MM6 cells (>twofold, P = .005) compared with ad-blank treated controls. Human macrophage recruitment into the mouse thrombus was confirmed by the colocalization of HLA with the PKH2-marked cells. Systemic injection of uPA-up-regulated HBMMs reduced thrombus weight by approximately 20% compared with ad-blank (P = .038) or sham-treated controls (P = .0028). Conclusion - Transduction of HBBM with ad-uPA increases their fibrinolytic activity. Systemic administration of uPA up-regulated HBBMs reduced thrombus size in an experimental model of venous thrombosis. Alternative methods of delivering fibrinolytic agents are worth exploring.
Resumo:
The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.
Resumo:
CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.