2 resultados para Uptake nutrients

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of ‘omics’ technologies is transforming scientific approaches to physiological problems from a reductionist viewpoint to that of a holistic viewpoint. This is of profound importance in nutrition, since the integration of multiple systems at the level of gene expression on the synthetic side through to metabolic enzyme activity on the degradative side combine to govern nutrient availability to tissues. Protein activity is central to the process of nutrition from the initial absorption of nutrients via uptake carriers in the gut, through to distribution and transport in the blood, metabolism by degradative enzymes in tissues and excretion through renal tubule exchange proteins. Therefore, the global profiling of the proteome, defined as the entire protein complement of the genome expressed in a particular cell or organ, or in plasma or serum at a particular time, offers the potential for identification of important biomarkers of nutritional state that respond to alterations in diet. The present review considers the published evidence of nutritional modulation of the proteome in vivo which has expanded exponentially over the last 3 years. It highlights some of the challenges faced by researchers using proteomic approaches to understand the interactions of diet with genomic and metabolic–phenotypic variables in normal populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gram-positive bacteria possess a permeable cell wall that usually does not restrict the penetration of antimicrobials. However, resistance due to restricted penetration can occur, as illustrated by vancomycin-intermediate resistant Staphylococcus aureus strains (VISA) which produce a markedly thickened cell wall. Alterations in these strains include increased amounts of nonamidated glutamine residues in the peptidoglycan and it is suggested that the resistance mechanism involves 'affinity trapping' of vancomycin in the thickened cell wall. VISA strains have reduced doubling times, lower sensitivity to lysostaphin and reduced autolytic activity, which may reflect changes in the D-alanyl ester content of the wall and membrane teichoic acids. Mycobacterial cell walls have a high lipid content, which is assumed to act as a major barrier to the penetration of antimicrobial agents. Relatively hydrophobic antibiotics such as rifampicin and fluoroquinolones may be able to cross the cell wall by diffusion through the hydrophobic bilayer composed of long chain length mycolic acids and glycolipids. Hydrophilic antibiotics and nutrients cannot diffuse across this layer and are thought to use porin channels which have been reported in many species of mycobacteria. The occurrence of porins in a lipid bilayer supports the view that the mycobacterial wall has an outer membrane analogous to that of gram-negative bacteria. However, mycobacterial porins are much less abundant than in the gram-negative outer membrane and allow only low rates of uptake for small hydrophilic nutrients and antibiotics.