2 resultados para Unconstrained minimization

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The international nuclear community continues to face the challenge of managing both the legacy waste and the new wastes that emerge from ongoing energy production. The UK is in the early stages of proposing a new convention for its nuclear industry, that is: waste minimisation through closely managing the radioactive source which creates the waste. This paper proposes a new technique (called waste and source material operability study (WASOP)) to qualitatively analyse a complex, waste-producing system to minimise avoidable waste and thus increase the protection to the public and the environment. Design/methodology/approach – WASOP critically considers the systemic impact of up and downstream facilities on the minimisation of nuclear waste in a facility. Based on the principles of HAZOP, the technique structures managers' thinking on the impact of mal-operations in interlinking facilities in order to identify preventative actions to reduce the impact on waste production of those mal-operations.' Findings – WASOP was tested with a small group of experienced nuclear regulators and was found to support their qualitative examination of waste minimisation and help them to work towards developing a plan of action. Originality/value – Given the newness of this convention, the wider methodology in which WASOP sits is still in development. However, this paper communicates the latest thinking from nuclear regulators on decision-making methodology for supporting waste minimisation and is hoped to form part of future regulatory guidance. WASOP is believed to have widespread potential application to the minimisation of many other forms of waste, including that from other energy sectors and household/general waste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minimization of undesirable temperature gradients in all dimensions of a planar solid oxide fuel cell (SOFC) is central to the thermal management and commercialization of this electrochemical reactor. This article explores the effective operating variables on the temperature gradient in a multilayer SOFC stack and presents a trade-off optimization. Three promising approaches are numerically tested via a model-based sensitivity analysis. The numerically efficient thermo-chemical model that had already been developed by the authors for the cell scale investigations (Tang et al. Chem. Eng. J. 2016, 290, 252-262) is integrated and extended in this work to allow further thermal studies at commercial scales. Initially, the most common approach for the minimization of stack's thermal inhomogeneity, i.e., usage of the excess air, is critically assessed. Subsequently, the adjustment of inlet gas temperatures is introduced as a complementary methodology to reduce the efficiency loss due to application of excess air. As another practical approach, regulation of the oxygen fraction in the cathode coolant stream is examined from both technical and economic viewpoints. Finally, a multiobjective optimization calculation is conducted to find an operating condition in which stack's efficiency and temperature gradient are maximum and minimum, respectively.