74 resultados para Uncertainty visualization

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Error and uncertainty in remotely sensed data come from several sources, and can be increased or mitigated by the processing to which that data is subjected (e.g. resampling, atmospheric correction). Historically the effects of such uncertainty have only been considered overall and evaluated in a confusion matrix which becomes high-level meta-data, and so is commonly ignored. However, some of the sources of uncertainty can be explicity identified and modelled, and their effects (which often vary across space and time) visualized. Others can be considered overall, but their spatial effects can still be visualized. This process of visualization is of particular value for users who need to assess the importance of data uncertainty for their own practical applications. This paper describes a Java-based toolkit, which uses interactive and linked views to enable visualization of data uncertainty by a variety of means. This allows users to consider error and uncertainty as integral elements of image data, to be viewed and explored, rather than as labels or indices attached to the data. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization has proven to be a powerful and widely-applicable tool the analysis and interpretation of data. Most visualization algorithms aim to find a projection from the data space down to a two-dimensional visualization space. However, for complex data sets living in a high-dimensional space it is unlikely that a single two-dimensional projection can reveal all of the interesting structure. We therefore introduce a hierarchical visualization algorithm which allows the complete data set to be visualized at the top level, with clusters and sub-clusters of data points visualized at deeper levels. The algorithm is based on a hierarchical mixture of latent variable models, whose parameters are estimated using the expectation-maximization algorithm. We demonstrate the principle of the approach first on a toy data set, and then apply the algorithm to the visualization of a synthetic data set in 12 dimensions obtained from a simulation of multi-phase flows in oil pipelines and to data in 36 dimensions derived from satellite images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidimensional compound optimization is a new paradigm in the drug discovery process, yielding efficiencies during early stages and reducing attrition in the later stages of drug development. The success of this strategy relies heavily on understanding this multidimensional data and extracting useful information from it. This paper demonstrates how principled visualization algorithms can be used to understand and explore a large data set created in the early stages of drug discovery. The experiments presented are performed on a real-world data set comprising biological activity data and some whole-molecular physicochemical properties. Data visualization is a popular way of presenting complex data in a simpler form. We have applied powerful principled visualization methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), to help the domain experts (screening scientists, chemists, biologists, etc.) understand and draw meaningful decisions. We also benchmark these principled methods against relatively better known visualization approaches, principal component analysis (PCA), Sammon's mapping, and self-organizing maps (SOMs), to demonstrate their enhanced power to help the user visualize the large multidimensional data sets one has to deal with during the early stages of the drug discovery process. The results reported clearly show that the GTM and HGTM algorithms allow the user to cluster active compounds for different targets and understand them better than the benchmarks. An interactive software tool supporting these visualization algorithms was provided to the domain experts. The tool facilitates the domain experts by exploration of the projection obtained from the visualization algorithms providing facilities such as parallel coordinate plots, magnification factors, directional curvatures, and integration with industry standard software. © 2006 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which allows for input noise given that some model of the noise process exists. In the limit where this noise process is small and symmetric it is shown, using the Laplace approximation, that there is an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using Markov Chain Monte Carlo methods, it is demonstrated that it is possible to infer the unbiassed regression over the noiseless input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchical visualization systems are desirable because a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex high-dimensional data sets. We extend an existing locally linear hierarchical visualization system PhiVis [1] in several directions: bf(1) we allow for em non-linear projection manifolds (the basic building block is the Generative Topographic Mapping -- GTM), bf(2) we introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree, bf(3) we describe folding patterns of low-dimensional projection manifold in high-dimensional data space by computing and visualizing the manifold's local directional curvatures. Quantities such as magnification factors [3] and directional curvatures are helpful for understanding the layout of the nonlinear projection manifold in the data space and for further refinement of the hierarchical visualization plot. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. We demonstrate the visualization system principle of the approach on a complex 12-dimensional data set and mention possible applications in the pharmaceutical industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently developed a principled approach to interactive non-linear hierarchical visualization [8] based on the Generative Topographic Mapping (GTM). Hierarchical plots are needed when a single visualization plot is not sufficient (e.g. when dealing with large quantities of data). In this paper we extend our system by giving the user a choice of initializing the child plots of the current plot in either interactive, or automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in [8], whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of GTMs is used. The latter is particularly useful when the plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a data set of 2300 18-dimensional points and mention extension of our system to accommodate discrete data types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data visualization algorithms and feature selection techniques are both widely used in bioinformatics but as distinct analytical approaches. Until now there has been no method of measuring feature saliency while training a data visualization model. We derive a generative topographic mapping (GTM) based data visualization approach which estimates feature saliency simultaneously with the training of the visualization model. The approach not only provides a better projection by modeling irrelevant features with a separate noise model but also gives feature saliency values which help the user to assess the significance of each feature. We compare the quality of projection obtained using the new approach with the projections from traditional GTM and self-organizing maps (SOM) algorithms. The results obtained on a synthetic and a real-life chemoinformatics dataset demonstrate that the proposed approach successfully identifies feature significance and provides coherent (compact) projections. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in service-oriented and distributed computing have created exciting opportunities for the integration of models in service chains to create the Model Web. This offers the potential for orchestrating web data and processing services, in complex chains; a flexible approach which exploits the increased access to products and tools, and the scalability offered by the Web. However, the uncertainty inherent in data and models must be quantified and communicated in an interoperable way, in order for its effects to be effectively assessed as errors propagate through complex automated model chains. We describe a proposed set of tools for handling, characterizing and communicating uncertainty in this context, and show how they can be used to 'uncertainty- enable' Web Services in a model chain. An example implementation is presented, which combines environmental and publicly-contributed data to produce estimates of sea-level air pressure, with estimates of uncertainty which incorporate the effects of model approximation as well as the uncertainty inherent in the observational and derived data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a problem structuring methodology to assess real option decisions in the face of unpredictability. Based on principles of robustness analysis and scenario planning, we demonstrate how decision-aiding can facilitate participation in projects setting and achieve effective decision making through the use of real options reasoning. We argue that robustness heuristics developed in earlier studies can be practical proxies for real options performance, hence indicators of efficient flexible planning. The developed framework also highlights how to integrate real options solutions in firms’ strategic plans and operating actions. The use of the methodology in a location decision application is provided for illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two studies were conducted to examine the impact of subjective uncertainty on conformity to group norms in the attitude-behaviour context. In both studies, subjective uncertainty was manipulated using a deliberative mindset manipulation (McGregor, Zanna, Holmes, & Spencer, 2001). In Study 1 (N = 106), participants were exposed to either an attitude-congruent or an attitude-incongruent in-group norm. In Study 2(N = 83), participants were exposed to either a congruent, incongruent, or an ambiguous in-group norm. Ranges of attitude-behaviour outcomes, including attitude-intention consistency and change in attitude-certainty, were assessed. In both studies, levels of group-normative behaviour varied as a function of uncertainty condition. In Study 1, conformity to group norms, as evidenced by variations in the level of attitude-intention consistency, was observed only in the high uncertainty condition. In Study 2, exposure to an ambiguous norm had different effects for those in the low and die high uncertainty conditions. In the low uncertainty condition, greatest conformity was observed in the attitude-congruent norm condition compared with an attitude-congruent or ambiguous norm. In contrast, individuals in the high uncertainty condition displayed greatest conformity when exposed to either an attitude-congruent or an ambiguous in-group norm. The implications of these results for the role of subjective uncertainty in social influence processes are discussed. © 2007 The British Psychological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With luminance gratings, psychophysical thresholds for detecting a small increase in the contrast of a weak ‘pedestal’ grating are 2–3 times lower than for detection of a grating when the pedestal is absent. This is the ‘dipper effect’ – a reliable improvement whose interpretation remains controversial. Analogies between luminance and depth (disparity) processing have attracted interest in the existence of a ‘disparity dipper’. Are thresholds for disparity modulation (corrugated surfaces), facilitated by the presence of a weak disparity-modulated pedestal? We used a 14-bit greyscale to render small disparities accurately, and measured 2AFC discrimination thresholds for disparity modulation (0.3 or 0.6 c/deg) of a random texture at various pedestal levels. In the first experiment, a clear dipper was found. Thresholds were about 2× lower with weak pedestals than without. But here the phase of modulation (0 or 180 deg) was varied from trial to trial. In a noisy signal-detection framework, this creates uncertainty that is reduced by the pedestal, which thus improves performance. When the uncertainty was eliminated by keeping phase constant within sessions, the dipper effect was weak or absent. Monte Carlo simulations showed that the influence of uncertainty could account well for the results of both experiments. A corollary is that the visual depth response to small disparities is probably linear, with no threshold-like nonlinearity.