71 resultados para Uncertainty avoidance
em Aston University Research Archive
Resumo:
This study was undertaken for two primary purposes. The first was to discover whether or not two of the four cultural dimensions depicted by Hof-stede (1980), namely Power Distance and Uncertainty Avoidance, could be repeated using samples from seven organizations operating in three distinct cultural settings. The second was to assess the degree to which these dimensions affect superior-subordinate communication across the culturally-different groups. Also, the impact of the three interpersonal factors: Trust in Superior, Upward Influence and Mobility Aspirations was investigated cross-culturally. Participants were 291 managers from seven organizations; four Sudanese, two white British and an organization in Britain run by a group of British citizens of Pakistani extraction. It was hypothesized that the Power Distance and Uncertainty Avoidance of the three groups would replicate Hof-stede's. Specific implications of these dimensions for organizational communication and in particular for superior-subordinate communication were also hypothesized. Multiple regression analyses were performed with items of the two cultural dimensions and the three interpersonal factors (each in turn) forming the independent variables, while the organizational communication aspects formed the dependent variables. T-tests between means were also used to compare and contrast issues such as directionality of information flow across organizations operating in these settings. Work-related values of each of the three cultural groups provided support for Hofstede's model. However, only tentative support was given to the hypothesized relationships between the cultural dimensions and organizational communication. Similarly, weak associations were found between the three interpersonal factors and superior-subordinate communication behaviour. Some practical and theoretical implications are offered. An evaluation of the study and recommendation for further research are also given.
Resumo:
The authors conduct a systematic investigation into the cyclical sensitivity of advertising expenditures in 37 countries, covering four key media: magazines, newspapers, radio, and television. They show that advertising is considerably more sensitive to business-cycle fluctuations than the economy as a whole. Advertising behaves less cyclically in countries high in long-term orientation and power distance, but it is more cyclical in countries high in uncertainty avoidance. Furthermore, advertising is more sensitive to the business cycle in countries characterized by significant stock market pressure and few foreign-owned multinational corporations. The authors provide initial evidence on the long-term social and managerial losses incurred when companies tie ad spending too tightly to business cycles. Countries in which advertising behaves more cyclically exhibit slower growth of the advertising industry. Moreover, private-label growth is higher in countries characterized by more cyclical advertising spending, implying significant losses for brand manufacturers. Finally, an examination of 26 global companies shows that stock price performance is lower for companies that exhibit stronger procyclical advertising spending patterns.
Resumo:
The authors conduct a meta-analysis on the combined influence of organizational and national culture on new product performance. For this purpose, they refer to the effectiveness of value congruency and develop a conceptual model describing the fit between organizational culture types as suggested by the competing values framework and national culture, as described by Hofstede's cultural dimensions. The meta-analysis is based on 489 effect sizes taken from 123 manuscripts. The findings show that organizations with a market culture show the highest new product performance, while hierarchy-type organizations show the lowest performance. The influence of national culture variables supports the effect of value congruency, and shows that in individualistic cultures the impact of a clan culture decreases, the impact of an adhocracy culture type decreases with uncertainty avoidance, and the influence of a hierarchy culture type increases with power distance. The superior effect of a market culture type can be matched by other organizational orientations, but in particular national cultures only. The combined findings underline the importance for firms that seek to improve the success rate of new products on international markets to consider the fit of a national culture with a firm's organizational culture.
Resumo:
This paper offers a fresh perspective on national culture and entrepreneurship research. It explores the role of Culturally-endorsed implicit Leadership Theories (CLTs) – i.e., the cultural expectations about outstanding, ideal leadership – on individual entrepreneurship. Developing arguments based on culture-entrepreneurship fit, we predict that charismatic and self-protective CLTs positively affect entrepreneurship. They provide a context that enables entrepreneurs to be co-operative in order to initiate change but also to be self-protective and competitive so as to safeguard their venture and avoid being exploited. We further theorize that CLTs are more proximal drivers of cross-country differences in entrepreneurship as compared with distal cultural values. We find support for our propositions in a multi-level study of 42 countries. Cultural values (of uncertainty avoidance and collectivism) influence entrepreneurship mainly indirectly, via charismatic and self-protective CLTs. We do not find a similar indirect effect for cultural practices.
Resumo:
It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which allows for input noise given that some model of the noise process exists. In the limit where this noise process is small and symmetric it is shown, using the Laplace approximation, that there is an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using Markov Chain Monte Carlo methods, it is demonstrated that it is possible to infer the unbiassed regression over the noiseless input.
Resumo:
We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.
Resumo:
This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.
Resumo:
Recent developments in service-oriented and distributed computing have created exciting opportunities for the integration of models in service chains to create the Model Web. This offers the potential for orchestrating web data and processing services, in complex chains; a flexible approach which exploits the increased access to products and tools, and the scalability offered by the Web. However, the uncertainty inherent in data and models must be quantified and communicated in an interoperable way, in order for its effects to be effectively assessed as errors propagate through complex automated model chains. We describe a proposed set of tools for handling, characterizing and communicating uncertainty in this context, and show how they can be used to 'uncertainty- enable' Web Services in a model chain. An example implementation is presented, which combines environmental and publicly-contributed data to produce estimates of sea-level air pressure, with estimates of uncertainty which incorporate the effects of model approximation as well as the uncertainty inherent in the observational and derived data.
Resumo:
This paper presents a problem structuring methodology to assess real option decisions in the face of unpredictability. Based on principles of robustness analysis and scenario planning, we demonstrate how decision-aiding can facilitate participation in projects setting and achieve effective decision making through the use of real options reasoning. We argue that robustness heuristics developed in earlier studies can be practical proxies for real options performance, hence indicators of efficient flexible planning. The developed framework also highlights how to integrate real options solutions in firms’ strategic plans and operating actions. The use of the methodology in a location decision application is provided for illustration.
Resumo:
Jackson (2005) developed a hybrid model of personality and learning, known as the learning styles profiler (LSP) which was designed to span biological, socio-cognitive, and experiential research foci of personality and learning research. The hybrid model argues that functional and dysfunctional learning outcomes can be best understood in terms of how cognitions and experiences control, discipline, and re-express the biologically based scale of sensation-seeking. In two studies with part-time workers undertaking tertiary education (N=137 and 58), established models of approach and avoidance from each of the three different research foci were compared with Jackson's hybrid model in their predictiveness of leadership, work, and university outcomes using self-report and supervisor ratings. Results showed that the hybrid model was generally optimal and, as hypothesized, that goal orientation was a mediator of sensation-seeking on outcomes (work performance, university performance, leader behaviours, and counterproductive work behaviour). Our studies suggest that the hybrid model has considerable promise as a predictor of work and educational outcomes as well as dysfunctional outcomes.
Resumo:
Two studies were conducted to examine the impact of subjective uncertainty on conformity to group norms in the attitude-behaviour context. In both studies, subjective uncertainty was manipulated using a deliberative mindset manipulation (McGregor, Zanna, Holmes, & Spencer, 2001). In Study 1 (N = 106), participants were exposed to either an attitude-congruent or an attitude-incongruent in-group norm. In Study 2(N = 83), participants were exposed to either a congruent, incongruent, or an ambiguous in-group norm. Ranges of attitude-behaviour outcomes, including attitude-intention consistency and change in attitude-certainty, were assessed. In both studies, levels of group-normative behaviour varied as a function of uncertainty condition. In Study 1, conformity to group norms, as evidenced by variations in the level of attitude-intention consistency, was observed only in the high uncertainty condition. In Study 2, exposure to an ambiguous norm had different effects for those in the low and die high uncertainty conditions. In the low uncertainty condition, greatest conformity was observed in the attitude-congruent norm condition compared with an attitude-congruent or ambiguous norm. In contrast, individuals in the high uncertainty condition displayed greatest conformity when exposed to either an attitude-congruent or an ambiguous in-group norm. The implications of these results for the role of subjective uncertainty in social influence processes are discussed. © 2007 The British Psychological Society.
Resumo:
The aim of this study was to determine the cues used to signal avoidance of difficult driving situations and to test the hypothesis that drivers with relatively poor high contrast visual acuity (HCVA) have fewer crashes than drivers with relatively poor normalised low contrast visual acuity (NLCVA). This is because those with poorer HCVA are well aware of their difficulties and avoid dangerous driving situations while those poorer NLCVA are often unaware of the extent of their problem. Age, self-reported situation avoidance and HCVA were collected during a practice based study of 690 drivers. Screening was also carried out on 7254 drivers at various venues, mainly motorway sites, throughout the UK. Age, self-reported situation avoidance and prior crash involvement were recorded and Titmus vision screeners were used to measure HCVA and NLCVA. Situation avoidance increased in reduced visibility conditions and was influenced by age and HCVA. Only half of the drivers used visual cues to signal situation avoidance and most of these drivers used high rather than low contrast cues. A statistical model designed to remove confounding interrelationships between variables showed, for drivers that did not report situation avoidance, that crash involvement decreased for drivers with below average HCVA and increased for those with below average NLCVA. These relationships accounted for less than 1% of the crash variance, so the hypothesis was not strongly supported. © 2002 The College of Optometrists.
Resumo:
With luminance gratings, psychophysical thresholds for detecting a small increase in the contrast of a weak ‘pedestal’ grating are 2–3 times lower than for detection of a grating when the pedestal is absent. This is the ‘dipper effect’ – a reliable improvement whose interpretation remains controversial. Analogies between luminance and depth (disparity) processing have attracted interest in the existence of a ‘disparity dipper’. Are thresholds for disparity modulation (corrugated surfaces), facilitated by the presence of a weak disparity-modulated pedestal? We used a 14-bit greyscale to render small disparities accurately, and measured 2AFC discrimination thresholds for disparity modulation (0.3 or 0.6 c/deg) of a random texture at various pedestal levels. In the first experiment, a clear dipper was found. Thresholds were about 2× lower with weak pedestals than without. But here the phase of modulation (0 or 180 deg) was varied from trial to trial. In a noisy signal-detection framework, this creates uncertainty that is reduced by the pedestal, which thus improves performance. When the uncertainty was eliminated by keeping phase constant within sessions, the dipper effect was weak or absent. Monte Carlo simulations showed that the influence of uncertainty could account well for the results of both experiments. A corollary is that the visual depth response to small disparities is probably linear, with no threshold-like nonlinearity.
Resumo:
Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection.
Resumo:
Traditionally, geostatistical algorithms are contained within specialist GIS and spatial statistics software. Such packages are often expensive, with relatively complex user interfaces and steep learning curves, and cannot be easily integrated into more complex process chains. In contrast, Service Oriented Architectures (SOAs) promote interoperability and loose coupling within distributed systems, typically using XML (eXtensible Markup Language) and Web services. Web services provide a mechanism for a user to discover and consume a particular process, often as part of a larger process chain, with minimal knowledge of how it works. Wrapping current geostatistical algorithms with a Web service layer would thus increase their accessibility, but raises several complex issues. This paper discusses a solution to providing interoperable, automatic geostatistical processing through the use of Web services, developed in the INTAMAP project (INTeroperability and Automated MAPping). The project builds upon Open Geospatial Consortium standards for describing observations, typically used within sensor webs, and employs Geography Markup Language (GML) to describe the spatial aspect of the problem domain. Thus the interpolation service is extremely flexible, being able to support a range of observation types, and can cope with issues such as change of support and differing error characteristics of sensors (by utilising descriptions of the observation process provided by SensorML). XML is accepted as the de facto standard for describing Web services, due to its expressive capabilities which allow automatic discovery and consumption by ‘naive’ users. Any XML schema employed must therefore be capable of describing every aspect of a service and its processes. However, no schema currently exists that can define the complex uncertainties and modelling choices that are often present within geostatistical analysis. We show a solution to this problem, developing a family of XML schemata to enable the description of a full range of uncertainty types. These types will range from simple statistics, such as the kriging mean and variances, through to a range of probability distributions and non-parametric models, such as realisations from a conditional simulation. By employing these schemata within a Web Processing Service (WPS) we show a prototype moving towards a truly interoperable geostatistical software architecture.