53 resultados para Uncertain nonlinear systems
em Aston University Research Archive
Resumo:
We introduce a novel inversion-based neuro-controller for solving control problems involving uncertain nonlinear systems that could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. In this work a novel robust inverse control approach is obtained based on importance sampling from these distributions. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The performance of the new algorithm is illustrated through simulations with example systems.
Resumo:
We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.
Resumo:
This thesis is concerned with the measurement of the characteristics of nonlinear systems by crosscorrelation, using pseudorandom input signals based on m sequences. The systems are characterised by Volterra series, and analytical expressions relating the rth order Volterra kernel to r-dimensional crosscorrelation measurements are derived. It is shown that the two-dimensional crosscorrelation measurements are related to the corresponding second order kernel values by a set of equations which may be structured into a number of independent subsets. The m sequence properties determine how the maximum order of the subsets for off-diagonal values is related to the upper bound of the arguments for nonzero kernel values. The upper bound of the arguments is used as a performance index, and the performance of antisymmetric pseudorandom binary, ternary and quinary signals is investigated. The performance indices obtained above are small in relation to the periods of the corresponding signals. To achieve higher performance with ternary signals, a method is proposed for combining the estimates of the second order kernel values so that the effects of some of the undesirable nonzero values in the fourth order autocorrelation function of the input signal are removed. The identification of the dynamics of two-input, single-output systems with multiplicative nonlinearity is investigated. It is shown that the characteristics of such a system may be determined by crosscorrelation experiments using phase-shifted versions of a common signal as inputs. The effects of nonlinearities on the estimates of system weighting functions obtained by crosscorrelation are also investigated. Results obtained by correlation testing of an industrial process are presented, and the differences between theoretical and experimental results discussed for this case;
Resumo:
This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.
Resumo:
This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.
Resumo:
In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
The recently discovered dissipative parametric instability is presented in the framework of the universal complex Ginzburg-Landau equation. The pattern formation associated with the instability is discussed in connection to the relevant applications in nonlinear photonics especially as a new tool for pulsed lasers design.
Resumo:
Control design for stochastic uncertain nonlinear systems is traditionally based on minimizing the expected value of a suitably chosen loss function. Moreover, most control methods usually assume the certainty equivalence principle to simplify the problem and make it computationally tractable. We offer an improved probabilistic framework which is not constrained by these previous assumptions, and provides a more natural framework for incorporating and dealing with uncertainty. The focus of this paper is on developing this framework to obtain an optimal control law strategy using a fully probabilistic approach for information extraction from process data, which does not require detailed knowledge of system dynamics. Moreover, the proposed control method framework allows handling the problem of input-dependent noise. A basic paradigm is proposed and the resulting algorithm is discussed. The proposed probabilistic control method is for the general nonlinear class of discrete-time systems. It is demonstrated theoretically on the affine class. A nonlinear simulation example is also provided to validate theoretical development.
Resumo:
Objective: This study aimed to explore methods of assessing interactions between neuronal sources using MEG beamformers. However, beamformer methodology is based on the assumption of no linear long-term source interdependencies [VanVeen BD, vanDrongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 1997;44:867-80; Robinson SE, Vrba J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Recent advances in Biomagnetism. Sendai: Tohoku University Press; 1999. p. 302-5]. Although such long-term correlations are not efficient and should not be anticipated in a healthy brain [Friston KJ. The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 2000;355:215-36], transient correlations seem to underlie functional cortical coordination [Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 1999;49-65; Rodriguez E, George N, Lachaux J, Martinerie J, Renault B, Varela F. Perception's shadow: long-distance synchronization of human brain activity. Nature 1999;397:430-3; Bressler SL, Kelso J. Cortical coordination dynamics and cognition. Trends Cogn Sci 2001;5:26-36]. Methods: Two periodic sources were simulated and the effects of transient source correlation on the spatial and temporal performance of the MEG beamformer were examined. Subsequently, the interdependencies of the reconstructed sources were investigated using coherence and phase synchronization analysis based on Mutual Information. Finally, two interacting nonlinear systems served as neuronal sources and their phase interdependencies were studied under realistic measurement conditions. Results: Both the spatial and the temporal beamformer source reconstructions were accurate as long as the transient source correlation did not exceed 30-40 percent of the duration of beamformer analysis. In addition, the interdependencies of periodic sources were preserved by the beamformer and phase synchronization of interacting nonlinear sources could be detected. Conclusions: MEG beamformer methods in conjunction with analysis of source interdependencies could provide accurate spatial and temporal descriptions of interactions between linear and nonlinear neuronal sources. Significance: The proposed methods can be used for the study of interactions between neuronal sources. © 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Nonlinear systems with periodic variations of nonlinearity and/or dispersion occur in a variety of physical problems and engineering applications. The mathematical concept of dispersion managed solitons already has made an impact on the development of fibre communications, optical signal processing and laser science. We overview here the field of the dispersion managed solitons starting from mathematical theories of Hamiltonian and dissipative systems and then discuss recent advances in practical implementation of this concept in fibre-optics and lasers.
Resumo:
Nonlinear systems with periodic variations of nonlinearity and/or dispersion occur in a variety of physical problems and engineering applications. The mathematical concept of dispersion managed solitons already has made an impact on the development of fibre communications, optical signal processing and laser science. We overview here the field of the dispersion managed solitons starting from mathematical theories of Hamiltonian and dissipative systems and then discuss recent advances in practical implementation of this concept in fibre-optics and lasers.
Resumo:
The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems and is demonstrated on nonlinear single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) examples. © 2006 IEEE.