6 resultados para Ultrasonic technique

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart structure sensors based on embedded fibre Bragg grating (FBG) arrays in aluminium alloy matrix by ultrasonic consolidation (UC) technique have been proposed and demonstrated successfully. The temperature, loading and bending responses of the embedded FBG arrays have been systematically characterized. The embedded FBGs exhibit an average temperature sensitivity of ~36 pm °C-1, which is three times higher than that of normal FBGs, a bending sensitivity of 0.73 nm/m-1 and a loading responsivity of ~0.1 nm kg-1 within the dynamic range from 0 kg to 3 kg. These initial experimental results clearly demonstrate that the UC produced metal matrix structures can be embedded with FBG sensor arrays to become smart structures with capabilities to monitor the structure operation and health conditions in applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis discusses the need for nondestructive testing and highlights some of the limitations in present day techniques. Special interest has been given to ultrasonic examination techniques and the problems encountered when they are applied to thick welded plates. Some suggestions are given using signal processing methods. Chapter 2 treats the need for nondestructive testing as seen in the light of economy and safety. A short review of present day techniques in nondestructive testing is also given. The special problems using ultrasonic techniques for welded structures is discussed in Chapter 3 with some examples of elastic wave propagation in welded steel. The limitations in applying sophisticated signal processing techniques to ultrasonic NDT~ mainly found in the transducers generating or receiving the ultrasound. Chapter 4 deals with the different transducers used. One of the difficulties with ultrasonic testing is the interpretation of the signals encountered. Similar problems might be found with SONAR/RADAR techniques and Chapter 5 draws some analogies between SONAR/RADAR and ultrasonic nondestructive testing. This chapter also includes a discussion on some on the techniques used in signal processing in general. A special signal processing technique found useful is cross-correlation detection and this technique is treated in Chapter 6. Electronic digital compute.rs have made signal processing techniques easier to implement -Chapter 7 discusses the use of digital computers in ultrasonic NDT. Experimental equipment used to test cross-correlation detection of ultrasonic signals is described in Chapter 8. Chapter 9 summarises the conclusions drawn during this investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SINNMR (Sonically Induced Narrowing of the Nuclear Magnetic Resonance spectra of solids), is a novel technique that is being developed to enable the routine study of solids by nuclear magnetic resonance spectroscopy. SINNMR aims to narrow the broad resonances that are characteristic of solid state NMR by inducing rapid incoherent motion of solid particles suspended in a support medium, using high frequency ultrasound in the range 2-10 MHz. The width of the normal broad resonances from solids are due to incomplete averaging of several components of the total spin Hamiltonian caused by restrictions placed on molecular motion within a solid. At present Magic Angle Spinning (MAS) NMR is the classical solid state technique used to reduce line broadening, but: this has associated problems, not least of which is the appearance of many spinning side bands which confuse the spectra. It is hoped that SlNNMR will offer a simple alternative, particularly as it does not reveal spinning sidebands The fundamental question concerning whether the use of ultrasound within a cryo-magnet will cause quenching has been investigated with success, as even under the most extreme conditions of power, frequency and irradiator time, the magnet does not quench. The objective of this work is to design and construct a SINNMR probe for use in a super conducting cryo-magnet NMR spectrometer. A cell for such a probe has been constructed and incorporated into an adapted high resolution broadband probe. It has been proved that the cell is capable of causing cavitation, up to 10 MHz, by running a series of ultrasonic reactions within it and observing the reaction products. It was found that the ultrasound was causing the sample to be heated to unacceptable temperatures and this necessitated the incorporation of temperature stabilisation devices. Work has been performed on the investigation of the narrowing of the solid state 23Na spectrum of tri-sodium phosphate using high frequency ultrasound. Work has also been completed on the signal enhancement and T1 reduction of a liquid mixture and a pure compound using ultrasound. Some preliminary "bench" experiments have been completed on a novel ultrasonic device designed to help minimise sample heating. The concept involves passing the ultrasound through a temperature stabilised, liquid filled funnel that has a drum skin on the end that will enable the passage of ultrasound into the sample. Bench experiments have proved that acoustic attenuation is low and that cavitation in the liquid beyond the device is still possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasonic waves interact in a complex manner with the metallurgical structure of austenitic weldments resulting in ambiguity when interpreting reflections and at times in misinterpretation of defect positions. In this work, current knowledge of the structure of austenitic welds is outlined, and the influence of this structure on the propagation of ultrasonic waves is reviewed. Using an established and highly accurate technique, data on velocity variations as a function of the angle between the direction of soundwave propagation and the axes of preferred grain orientation existing in such welds, are experimentally obtained. These results and existing theory are used to provide quantitative evidence of (i) anisotropy factors in austenitic welds, (ii) beam skewing effects for different wave modes and polarizations, and (iii) the extent of acoustic impedance mismatch between parent and weld metals. The existence of "false" indications is demonstrated, and suggestions are made into their nature. The effectiveness of conventional transverse wave techniques for inspecting artificial and real defects existing in austenitic weldments is experimentally investigated, the limitations are demonstrated, and possible solutions are proposed. The possibilities offered by the use of longitudinal angle probes for ultrasonic inspection of real and artificial defects existing in austenitic weldments are experimentally investigated, and parameters such as probe angle, frequency and scanning position are evaluated. Detailed work has been carried out on the interaction of ultrasound with fatigue and corrosion-fatigue cracks in the weld metal and the heat affected zones (HAZs) of 316 and 347 types of austenitic weldments, together with the influence of elastic compressive stresses, defect topography and defect geometry. Practical applications of all results are discussed, and more effective means of ultrasonic inspection of austenitic weldments are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.