17 resultados para Ultimate reality

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impressions about product quality and reliability can depend as much on perceptions about brands and country of origin as on data regarding performance and failure. This has implications for companies in developing countries that need to compete with importers. For manufacturers in industrialised countries it has implications for the value of transferred technologies. This article considers the issue of quality and reliability when technology is transferred between countries with different levels of development. It is based on UK and Chinese company case studies and questionnaire surveys undertaken among three company groups: UK manufacturers; Chinese manufacturers; Chinese users. Results show that all three groups recognise quality and reliability as important and support the premise that foreign technology based machines made in China carry a price premium over Chinese machines based on local technology. Closer examination reveals a number of important differences concerning the perceptions and reality of quality and reliability between the groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous scientific disciplines suffer from a common epistemological ailment. They tend to generate impressive bodies of empirical knowledge that are otherwise disjointed. The key force that shapes this reality is the lack of organizing meta-frameworks that are capable of otherwise creating a consilient body of core knowledge. In the current paper, we seek to demonstrate the synthetic value of evolutionary theory across a wide range of neuro-business disciplines including neuroeconomics, neuromarketing, neuroentrepreneurship, and organizational neuroscience. Neuroscientists operating at the junction of the brain sciences and a wide range of business disciplines stand to benefit in recognizing that the minds of Homo consumericus, Homo corporaticus, and Homo economicus have been forged by Darwinian forces that have shaped all living organisms. A complete and accurate understanding of most neuro-business phenomena requires that these be tackled at both the proximate (i.e., how something operates) and ultimate (its adaptive function) levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initially the study focussed on the factors affecting the ability of the police to solve crimes. An analysts of over twenty thousand police deployments revealed the proportion of time spent investigating crime contrasted to its perceived importance and the time spent on other activities. The fictional portrayal of skills believed important in successful crime investigation were identified and compared to the professional training and 'taught skills’ given to police and detectives. Police practitioners and middle management provided views on the skills needed to solve crimes. The relative importance of the forensic science role. fingerprint examination and interrogation skills were contrasted with changes in police methods resulting from the Police and Criminal Evidence Act and its effect on confessions. The study revealed that existing police systems for investigating crime excluding specifically cases of murder and other serious offences, were unsystematic, uncoordinated, unsupervised and unproductive in using police resources. The study examined relevant and contemporary research in the United States and United Kingdom and with organisational support introduced an experimental system of data capture and initial investigation with features of case screening and management. Preliminary results indicated increases in the collection of essential information and more effective use of investigative resources. In the managerial framework within which this study has been conducted, research has been undertaken in the knowledge elicitation area as a basis for an expert system of crime investigation and the potential organisational benefits of utilising the Lap computer in the first stages of data gathering and investigation. The conclusions demonstrate the need for a totally integrated system of criminal investigation with emphasis on an organisational rather than individual response. In some areas the evidence produced is sufficient to warrant replication, in others additional research is needed to further explore other concepts and proposed systems pioneered by this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented in this thesis are original theoretical solutions for the determination of the ultimate strength in bending and torsion for: a) Plain concrete members. (b) Concrete members reinforced with longitudinal steel only. (c) Concrete members reinforced with longitudinal and transverse steel at yield. (d) Concrete members reinforced with longitudinal and transverse steel, where partial yielding and non yielding occurs. The theories are compared with available experimental results and show reasonable agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This conceptual article examines the relationship between marketing and sustainability through the dual lenses of anthropocentric and ecocentric epistemology. Using the current anthropocentric epistemology and its associated dominant social paradigm, corporate ecological sustainability in commercial practice and business school research and teaching is difficult to achieve. However, adopting an ecocentric epistemology enables the development of an alternative business and marketing approach that places equal importance on nature, the planet, and ecological sustainability as the source of human and other species' well-being, as well as the source of all products and services. This article examines ecocentric, transformational business, and marketing strategies epistemologically, conceptually and practically and thereby proposes six ecocentric, transformational, strategic marketing universal premises as part of a vision of and solution to current global un-sustainability. Finally, this article outlines several opportunities for management practice and further research. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strong focus of NITL’s research activity is on monitoring the extent to which SCM principles and concepts are adopted by organisations based in Ireland. For more than a decade this work has aimed to develop a profile of SCM adoption, as well as identifying some of the critical success factors and barriers influencing firms in their attempts to improve supply chain capability and performance. This article explains the role of SCM in Ireland’s economic recovery and provides an overview of NITL’s latest findings in relation to the adoption of SCM practices by firms in Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Purpose. Virtual reality devices, including virtual reality head-mounted displays, are becoming increasingly accessible to the general public as technological advances lead to reduced costs. However, there are numerous reports that adverse effects such as ocular discomfort and headache are associated with these devices. To investigate these adverse effects, questionnaires that have been specifically designed for other purposes such as investigating motion sickness have often been used. The primary purpose of this study was to develop a standard questionnaire for use in investigating symptoms that result from virtual reality viewing. In addition, symptom duration and whether priming subjects elevates symptom ratings were also investigated. Methods. A list of the most frequently reported symptoms following virtual reality viewing was determined from previously published studies and used as the basis for a pilot questionnaire. The pilot questionnaire, which consisted of 12 nonocular and 11 ocular symptoms, was administered to two groups of eight subjects. One group was primed by having them complete the questionnaire before immersion; the other group completed the questionnaire postviewing only. Postviewing testing was carried out immediately after viewing and then at 2-min intervals for a further 10 min. Results. Priming subjects did not elevate symptom ratings; therefore, the data were pooled and 16 symptoms were found to increase significantly. The majority of symptoms dissipated rapidly, within 6 min after viewing. Frequency of endorsement data showed that approximately half of the symptoms on the pilot questionnaire could be discarded because <20% of subjects experienced them. Conclusions. Symptom questionnaires to investigate virtual reality viewing can be administered before viewing, without biasing the findings, allowing calculation of the amount of change from pre- to postviewing. However, symptoms dissipate rapidly and assessment of symptoms needs to occur in the first 5 min postviewing. Thirteen symptom questions, eight nonocular and five ocular, were determined to be useful for a questionnaire specifically related to virtual reality viewing using a head-mounted display.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a random fiber laser of ultimate efficiency. More than 2 Watts are generated from 0.5W of pump excess over the generation threshold. At higher power, an optical efficiency corresponds to the quantum limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full text: The idea of producing proteins from recombinant DNA hatched almost half a century ago. In his PhD thesis, Peter Lobban foresaw the prospect of inserting foreign DNA (from any source, including mammalian cells) into the genome of a λ phage in order to detect and recover protein products from Escherichia coli [ 1 and 2]. Only a few years later, in 1977, Herbert Boyer and his colleagues succeeded in the first ever expression of a peptide-coding gene in E. coli — they produced recombinant somatostatin [ 3] followed shortly after by human insulin. The field has advanced enormously since those early days and today recombinant proteins have become indispensable in advancing research and development in all fields of the life sciences. Structural biology, in particular, has benefitted tremendously from recombinant protein biotechnology, and an overwhelming proportion of the entries in the Protein Data Bank (PDB) are based on heterologously expressed proteins. Nonetheless, synthesizing, purifying and stabilizing recombinant proteins can still be thoroughly challenging. For example, the soluble proteome is organized to a large part into multicomponent complexes (in humans often comprising ten or more subunits), posing critical challenges for recombinant production. A third of all proteins in cells are located in the membrane, and pose special challenges that require a more bespoke approach. Recent advances may now mean that even these most recalcitrant of proteins could become tenable structural biology targets on a more routine basis. In this special issue, we examine progress in key areas that suggests this is indeed the case. Our first contribution examines the importance of understanding quality control in the host cell during recombinant protein production, and pays particular attention to the synthesis of recombinant membrane proteins. A major challenge faced by any host cell factory is the balance it must strike between its own requirements for growth and the fact that its cellular machinery has essentially been hijacked by an expression construct. In this context, Bill and von der Haar examine emerging insights into the role of the dependent pathways of translation and protein folding in defining high-yielding recombinant membrane protein production experiments for the common prokaryotic and eukaryotic expression hosts. Rather than acting as isolated entities, many membrane proteins form complexes to carry out their functions. To understand their biological mechanisms, it is essential to study the molecular structure of the intact membrane protein assemblies. Recombinant production of membrane protein complexes is still a formidable, at times insurmountable, challenge. In these cases, extraction from natural sources is the only option to prepare samples for structural and functional studies. Zorman and co-workers, in our second contribution, provide an overview of recent advances in the production of multi-subunit membrane protein complexes and highlight recent achievements in membrane protein structural research brought about by state-of-the-art near-atomic resolution cryo-electron microscopy techniques. E. coli has been the dominant host cell for recombinant protein production. Nonetheless, eukaryotic expression systems, including yeasts, insect cells and mammalian cells, are increasingly gaining prominence in the field. The yeast species Pichia pastoris, is a well-established recombinant expression system for a number of applications, including the production of a range of different membrane proteins. Byrne reviews high-resolution structures that have been determined using this methylotroph as an expression host. Although it is not yet clear why P. pastoris is suited to producing such a wide range of membrane proteins, its ease of use and the availability of diverse tools that can be readily implemented in standard bioscience laboratories mean that it is likely to become an increasingly popular option in structural biology pipelines. The contribution by Columbus concludes the membrane protein section of this volume. In her overview of post-expression strategies, Columbus surveys the four most common biochemical approaches for the structural investigation of membrane proteins. Limited proteolysis has successfully aided structure determination of membrane proteins in many cases. Deglycosylation of membrane proteins following production and purification analysis has also facilitated membrane protein structure analysis. Moreover, chemical modifications, such as lysine methylation and cysteine alkylation, have proven their worth to facilitate crystallization of membrane proteins, as well as NMR investigations of membrane protein conformational sampling. Together these approaches have greatly facilitated the structure determination of more than 40 membrane proteins to date. It may be an advantage to produce a target protein in mammalian cells, especially if authentic post-translational modifications such as glycosylation are required for proper activity. Chinese Hamster Ovary (CHO) cells and Human Embryonic Kidney (HEK) 293 cell lines have emerged as excellent hosts for heterologous production. The generation of stable cell-lines is often an aspiration for synthesizing proteins expressed in mammalian cells, in particular if high volumetric yields are to be achieved. In his report, Buessow surveys recent structures of proteins produced using stable mammalian cells and summarizes both well-established and novel approaches to facilitate stable cell-line generation for structural biology applications. The ambition of many biologists is to observe a protein's structure in the native environment of the cell itself. Until recently, this seemed to be more of a dream than a reality. Advances in nuclear magnetic resonance (NMR) spectroscopy techniques, however, have now made possible the observation of mechanistic events at the molecular level of protein structure. Smith and colleagues, in an exciting contribution, review emerging ‘in-cell NMR’ techniques that demonstrate the potential to monitor biological activities by NMR in real time in native physiological environments. A current drawback of NMR as a structure determination tool derives from size limitations of the molecule under investigation and the structures of large proteins and their complexes are therefore typically intractable by NMR. A solution to this challenge is the use of selective isotope labeling of the target protein, which results in a marked reduction of the complexity of NMR spectra and allows dynamic processes even in very large proteins and even ribosomes to be investigated. Kerfah and co-workers introduce methyl-specific isotopic labeling as a molecular tool-box, and review its applications to the solution NMR analysis of large proteins. Tyagi and Lemke next examine single-molecule FRET and crosslinking following the co-translational incorporation of non-canonical amino acids (ncAAs); the goal here is to move beyond static snap-shots of proteins and their complexes and to observe them as dynamic entities. The encoding of ncAAs through codon-suppression technology allows biomolecules to be investigated with diverse structural biology methods. In their article, Tyagi and Lemke discuss these approaches and speculate on the design of improved host organisms for ‘integrative structural biology research’. Our volume concludes with two contributions that resolve particular bottlenecks in the protein structure determination pipeline. The contribution by Crepin and co-workers introduces the concept of polyproteins in contemporary structural biology. Polyproteins are widespread in nature. They represent long polypeptide chains in which individual smaller proteins with different biological function are covalently linked together. Highly specific proteases then tailor the polyprotein into its constituent proteins. Many viruses use polyproteins as a means of organizing their proteome. The concept of polyproteins has now been exploited successfully to produce hitherto inaccessible recombinant protein complexes. For instance, by means of a self-processing synthetic polyprotein, the influenza polymerase, a high-value drug target that had remained elusive for decades, has been produced, and its high-resolution structure determined. In the contribution by Desmyter and co-workers, a further, often imposing, bottleneck in high-resolution protein structure determination is addressed: The requirement to form stable three-dimensional crystal lattices that diffract incident X-ray radiation to high resolution. Nanobodies have proven to be uniquely useful as crystallization chaperones, to coax challenging targets into suitable crystal lattices. Desmyter and co-workers review the generation of nanobodies by immunization, and highlight the application of this powerful technology to the crystallography of important protein specimens including G protein-coupled receptors (GPCRs). Recombinant protein production has come a long way since Peter Lobban's hypothesis in the late 1960s, with recombinant proteins now a dominant force in structural biology. The contributions in this volume showcase an impressive array of inventive approaches that are being developed and implemented, ever increasing the scope of recombinant technology to facilitate the determination of elusive protein structures. Powerful new methods from synthetic biology are further accelerating progress. Structure determination is now reaching into the living cell with the ultimate goal of observing functional molecular architectures in action in their native physiological environment. We anticipate that even the most challenging protein assemblies will be tackled by recombinant technology in the near future.