11 resultados para USE WEIGHT
em Aston University Research Archive
Resumo:
The aim of this research project was to identify the factors affecting the porcine pancreatic lipase (PPL.)-catalysed polytransesterification of a diester and a diol in organic solvents. It was hoped that by modifying reaction conditions a commercially acceptable polymer molecular weight (Mn) of 20,000 daltons might be attained. Exploratory investigations were carried out using 1,4-butanediolibis(2,2,2- trichloroethyl) adipate and glutarate systems in diethyl ether, with and without molecular sieves. It was found that molecular sieves promoted the reaction by reducing hydrolysis of the ester end-groups, resulting in polymer molecular weights between 1.2 and 2.2 times greater than those obtainable without molecular sieves. Investigations were then concentrated on the PPL-catalysed polytransesterification of 1,4-butanediol with divinyl adipate. The particular advantage of this system is that the reaction is irreversible. The effects of varying substrate concentration, mass of drying agent, reaction solvent, reaction temperature, mass of enzyme and also enzyme immobilisation on the 1,4-butanediolidivinyl adipate system were investigated. The highest molecular weight polymer obtained for the PPL-catalysed polytransesterification of 1,4-butanedial with divinyl adipate in diethyl ether was Mn -8,000. In higher boiling ether solvents molecular weights as high as Mn -9,200 were obtained for this system at elevated temperatures. It was found that the major factor limiting polymerisation was the low solubility of the polymer in the solvent which resulted in precipitation of the polymer onto the surface of the enzyme.
Resumo:
Two key issues defined the focus of this research in manufacturing plasmid DNA for use In human gene therapy. First, the processing of E.coli bacterial cells to effect the separation of therapeutic plasmid DNA from cellular debris and adventitious material. Second, the affinity purification of the plasmid DNA in a Simple one-stage process. The need arises when considering the concerns that have been recently voiced by the FDA concerning the scalability and reproducibility of the current manufacturing processes in meeting the quality criteria of purity, potency, efficacy, and safety for a recombinant drug substance for use in humans. To develop a preliminary purification procedure, an EFD cross-flow micro-filtration module was assessed for its ability to effect the 20-fold concentration, 6-time diafiltration, and final clarification of the plasmid DNA from the subsequent cell lysate that is derived from a 1 liter E.coli bacterial cell culture. Historically, the employment of cross-flow filtration modules within procedures for harvesting cells from bacterial cultures have failed to reach the required standards dictated by existing continuous centrifuge technologies, frequently resulting in the rapid blinding of the membrane with bacterial cells that substantially reduces the permeate flux. By challenging the EFD module, containing six helical wound tubular membranes promoting centrifugal instabilities known as Dean vortices, with distilled water between the Dean number's of 187Dn and 818Dn,and the transmembrane pressures (TMP) of 0 to 5 psi. The data demonstrated that the fluid dynamics significantly influenced the permeation rate, displaying a maximum at 227Dn (312 Imh) and minimum at 818Dn (130 Imh) for a transmembrane pressure of 1 psi. Numerical studies indicated that the initial increase and subsequent decrease resulted from a competition between the centrifugal and viscous forces that create the Dean vortices. At Dean numbers between 187Dn and 227Dn , the forces combine constructively to increase the apparent strength and influence of the Dean vortices. However, as the Dean number in increases above 227 On the centrifugal force dominates the viscous forces, compressing the Dean vortices into the membrane walls and reducing their influence on the radial transmembrane pressure i.e. the permeate flux reduced. When investigating the action of the Dean vortices in controlling tile fouling rate of E.coli bacterial cells, it was demonstrated that the optimum cross-flow rate at which to effect the concentration of a bacterial cell culture was 579Dn and 3 psi TMP, processing in excess of 400 Imh for 20 minutes (i.e., concentrating a 1L culture to 50 ml in 10 minutes at an average of 450 Imh). The data demonstrated that there was a conflict between the Dean number at which the shear rate could control the cell fouling, and the Dean number at which tile optimum flux enhancement was found. Hence, the internal geometry of the EFD module was shown to sub-optimal for this application. At 579Dn and 3 psi TMP, the 6-fold diafiltration was shown to occupy 3.6 minutes of process time, processing at an average flux of 400 Imh. Again, at 579Dn and 3 psi TMP the clarification of the plasmid from tile resulting freeze-thaw cell lysate was achieved at 120 Iml1, passing 83% (2,5 mg) of the plasmid DNA (6,3 ng μ-1 10.8 mg of genomic DNA (∼23,00 Obp, 36 ng μ-1 ), and 7.2 mg of cellular proteins (5-100 kDa, 21.4 ngμ-1 ) into the post-EFD process stream. Hence the EFD module was shown to be effective, achieving the desired objectives in approximately 25 minutes. On the basis of its ability to intercalate into low molecular weight dsDNA present in dilute cell lysates, and be electrophoresed through agarose, the fluorophore PicoGreen was selected for the development of a suitable dsDNA assay. It was assesseel for its accuracy, and reliability, In determining the concentration and identity of DNA present in samples that were eleclrophoresed through agarose gels. The signal emitted by intercalated PicoGreen was shown to be constant and linear, and that the mobility of the PicaGreen-DNA complex was not affected by the intercalation. Concerning the secondary purification procedure, various anion-exchange membranes were assessed for their ability to capture plasmid DNA from the post-EFD process stream. For a commercially available Sartorius Sartobind Q15 membrane, the reduction in the equilibriumbinding capacity for ctDNA in buffer of increasing ionic demonstrated that DNA was being.adsorbed by electrostatic interactions only. However, the problems associated with fluid distribution across the membrane demonstrated that the membrane housing was the predominant cause of the .erratic breakthrough curves. Consequently, this would need to be rectified before such a membrane could be integrated into the current system, or indeed be scaled beyond laboratory scale. However, when challenged with the process material, the data showed that considerable quantities of protein (1150 μg) were adsorbed preferentially to the plasmid DNA (44 μg). This was also shown for derived Pall Gelman UltraBind US450 membranes that had been functionalised by varying molecular weight poly-L~lysine and polyethyleneimine ligands. Hence the anion-exchange membranes were shown to be ineffective in capturing plasmid DNA from the process stream. Finally, work was performed to integrate a sequence-specific DNA·binding protein into a single-stage DNA chromatography, isolating plasmid DNA from E.coli cells whilst minimising the contamination from genomic DNA and cellular protein. Preliminary work demonstrated that the fusion protein was capable of isolating pUC19 DNA into which the recognition sequence for the fusion-protein had been inserted (pTS DNA) when in the presence of the conditioned process material. Althougth the pTS recognition sequence differs from native pUC19 sequences by only 2 bp, the fusion protein was shown to act as a highly selective affinity ligand for pTS DNA alone. Subsequently, the scale of the process was scaled 25-fold and positioned directly following the EFD system. In conclusion, the integration of the EFD micro-filtration system and zinc-finger affinity purification technique resulted in the capture of approximately 1 mg of plasmid DNA was purified from 1L of E.coli culture in a simple two stage process, resulting in the complete removal of genomic DNA and 96.7% of cellular protein in less than 1 hour of process time.
Resumo:
The enzyme catalysed polytransesterification of diesters with diols was investigated under various conditions. The most consistent results were obtained using crude porcine pancreatic lipase (PPL) suspended in anhydrous diethyl ether. Addition of molecular sieve to the above system gave higher molecular weight products. The PPL catalysed reaction of bis(2,2,2-trichlorethyl) adipate and glutarate with butane-1,4-diol in anhydrous ether with and without molecular sieve was investigated over a range of times from 8 to 240 hours. The 72 hour adipate reaction with molecular sieve gave the highest molecular weight polymer (Mn 6,500 and Mw 9,400). The glutarate gave the maximum molecular weight polyester after 24 hours (Mn 5,700 and Mw 9,500). Occasionally the glutarate reaction produced very high molecular weight polyester-enzyme complexes. Toluene generally gave lower molecular weight products than diethyl ether. Dichloromethane and tetrahydrofuran gave mainly dimers and trimers. Alternative enzyme and diol systems were also investigated. These yielded no polymeric products. The molecular weights of the polyesters were determined by 1H NMR end-group analysis and by GPC. The molecular weights determined by NMR were on average about twice as great as those determined by GPC. The synthesis of the following diesters is described: i)Bis(2,2,2-trichloroethyl) succinate, glutarate, adipate, trans-3-hexenedioate, and trans-3,4-epoxyadipate. ii) Diphenyl glutarate and adipate.iii)Bis(2,2,2-fluoroethyl) glutarate and trans-3-hexendioate.iv) Divinyl glutarate. v) N,N'Glutaryl dicyclohexanone oxime.The polytransesterification of all the above esters with diols was investigated. The easily synthesised bis(2,2,2-trichloroethyl) glutarate and adipate gave the best results and the work was concentrated on these two esters.
Resumo:
This study expands the current knowledge base on the nature, causes and fate of unused medicines in primary care. Three methodologies were used and participants for each element were sampled from the population of Eastern Birmingham PCT. A detailed assessment was made of medicines returned to pharmacies and GP surgeries for destruction and a postal questionnaire covering medicines use and disposal was used to patients randomly selected from the electoral roll. The content of this questionnaire was informed by qualitative data from a group interview on the subject. By use of these three methods it was possible to triangulate the data, providing a comprehensive assessment of unused medicines. Unused medicines were found to be ubiquitous in primary care and cardiovascular, diabetic and respiratory medicines are unused in substantial quantities, accounting for a considerable proportion of the total financial value of all unused medicines. Additionally, analgesic and psychoactive medicines were highlighted as being unused in sufficient quantities for concern. Anti-infective medicines also appear to be present and unused in a substantial proportion of patients’ homes. Changes to prescribed therapy and non-compliance were identified as important factors leading to the generation of unused medicines. However, a wide array of other elements influence the quantities and types of medicines that are unused including the concordancy of GP consultations and medication reviews and patient factors such as age, sex or ethnicity. Medicines were appropriately discarded by 1 in 3 patients through return to a medical or pharmaceutical establishment. Inappropriate disposal was by placing in household refuse or through grey and black water with the possibility of hoarding or diversion also being identified. No correlations wre found between the weight of unused medicines and any clinical or financial factor. The study has highlighted unused medicines to be an issue of some concern and one that requires further study.
Resumo:
As mobile devices become increasingly diverse and continue to shrink in size and weight, their portability is enhanced but, unfortunately, their usability tends to suffer. Ultimately, the usability of mobile technologies determines their future success in terms of end-user acceptance and, thereafter, adoption and social impact. Widespread acceptance will not, however, be achieved if users’ interaction with mobile technology amounts to a negative experience. Mobile user interfaces need to be designed to meet the functional and sensory needs of users. Social and Organizational Impacts of Emerging Mobile Devices: Evaluating Use focuses on human-computer interaction related to the innovation and research in the design, evaluation, and use of innovative handheld, mobile, and wearable technologies in order to broaden the overall body of knowledge regarding such issues. It aims to provide an international forum for researchers, educators, and practitioners to advance knowledge and practice in all facets of design and evaluation of human interaction with mobile technologies.
Resumo:
Objectives. The present study aimed to ascertain whether parental reports of their feeding practices are associated with independent observations of these behaviours, and whether the reliability of maternal report depends upon the child's weight. Methods. A total of 56 mothers and their children ate a lunch to satiety which was videotaped and coded for maternal use of control during feeding. Mothers also completed questionnaires about their feeding practices and children were weighed and measured. Results. Maternal reports of controlling feeding practices were poorly related to independent observations of these behaviours in the laboratory. However, there was a significant interaction between child BMI z score and observed pressure to eat in predicting maternally reported pressure to eat. There was also a significant interaction between child BMI z score and observed maternal restriction with food in predicting maternally reported restriction. When decomposed, these interactions suggested that only mothers of relatively underweight children were accurate at reporting their use of pressure to eat when compared to independent observations. For mothers of relatively overweight children there was a significant negative relationship between observed and reported restriction over food. Conclusions. Overall there was poor correspondence between maternal reports and independent observations of the use of controlling feeding practices. Further research is needed to replicate these findings and to ascertain whether parents who are inaccurate at reporting their use of these feeding practices are unaware that they are using controlling feeding practices or whether they are responding in socially desirable ways to questionnaires assessing their feeding behaviour. © 2011 Informa Healthcare.
Resumo:
INTRODUCTION. The exertion of control during child feeding has been associated with both underweight and overweight during childhood. What is as-yet unclear is whether controlling child feeding practices causally affect child weight or whether the use of control may be a reactive response to concerns about high or low child weight. The aims of this study were to explore the direction of causality in these relationships during infancy. METHODS. Sixty-two women gave informed consent to take part in this longitudinal study that spanned from birth to 2 years of child age. Mothers completed the Child Feeding Questionnaire at 1 year, and their children were weighed at 1 and 2 years of age. Child weight scores were converted into standardized z scores that accounted for child age and gender. RESULTS. Controlling for child weight at 1 year, the use of pressure to eat and restriction at 1 year significantly predicted lower child weight at 2 years. CONCLUSIONS. Controlling feeding practices in infancy have an impact on children's weight at 2 years. The use of restrictive child feeding practices during infancy predicts lower child weight at age 2 years, which may reinforce mothers' use of this strategy in the longer term despite its potential association with disinhibition and greater child weight in later childhood.
Resumo:
Full editorial: A recent study evaluating the long-term (2 yr) weight reducing efficacy of different types of diets – high or low in carbohydrates (CHOs), protein or fat - confirmed that it is calorie deficit not dietary composition that determines the loss and maintenance of body weight.1 Is there any advantage in following a specific weight loss diet? Short-term use of nutritionally complete commercially available (very) low calorie diets has benefited people with diabetes when supported by education programmes.2 Initial weight loss has been encouraging with some fad diets eg the Atkins and the South Beach diets, but these diets are difficult to maintain and there are safety issues regarding their short- and long-term use – especially in people with diabetes.3 The types of macronutrients consumed can have a considerable impact on glycaemic control and energy metabolism. Although a low CHO diet additionally enhances initial weight loss by reducing cellular water content, if fat is not proportionally reduced the diet may not benefit the lipid profile for vascular disease risk. High fat and high protein diets – which are simultaneously low in CHOs – increase vulnerability to hypoglycaemia in people taking insulin secretagogues or on insulin therapy, and may promote excess fat metabolism and ketogenesis, particularly in people vulnerable to lack of insulin. Very low protein diets are not recommended as lean body mass tends to be reduced in diabetes. Altering the macronutrient balance has implications for the micronutrient mix: deficiencies are higher if more foods are excluded and conversely specific micronutrient excess can occur with some fad diets. The altered nutrient mix affects intestinal fauna and flora, and gut motility and glycaemic control are influenced by the quantity and type of fibre consumed. Support programmes help individuals achieve long term weight loss and there is mounting evidence that community schemes which educate and promote lifestyle changes may stem the rising tide of obesity and consequent type 2 diabetes.4 Consuming smaller portions of a balanced diet (and adjusting antidiabetic medications accordingly) will create an energy deficit to promote healthy weight loss. Increased movement/exercise will enhance this energy deficit. Knowledge (eg 1g fat has 2.25 times more energy than 1g CHO) allows sensible food choices and compensation for inclusion of small volumes of ‘naughty but nice’ foods. Ultimately weight control requires self control. References 1. Sacks FM, Bray GA, Carey VJ et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009;360:859–73. 2. Bennett P. Obesity, diabetes and VLCD. Br J Diabetes Vasc Dis 2004;4:328–30. 3. Baldwin EJ. Fad diets in diabetes. Br J Diabetes Vasc DIs 2004;4:333–7. 4. Romon M, Lommoz A, Tafflet M et al. Downward trends in the prevalence of childhood overweight in the setting of 12-year school- and community-based programmes. Public Health Nutr 2008; Dec 28, 1–8 [Epub ahead of print].
Resumo:
Synthetic hydrogel polymers were prepared by free radical photopolymerization in aqueous solution of the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS). Poly(ethylene glycol) diacrylate (PEGDA) and 4,4'-azo-bis(4-cyanopentanoic acid) were used as the crosslinker and UV-photoinitiator, respectively. The effects of varying the Na-AMPS monomer concentration within the range of 30-50% w/v and the crosslinker concentration within the range of 0.1-1.0% mol (relative to monomer) were studied in terms of their influence on water absorption properties. The hydrogel sheets exhibited extremely high swelling capacities in aqueous media which were dependent on monomer concentration, crosslink density, and the ionic strength and composition of the immersion medium. The effects of varying the number-average molecular weight of the PEGDA crosslinker from = 250 to 700 were also investigated. Interestingly, it was found that increasing the molecular weight and therefore the crosslink length at constant crosslink density decreased both the rate of water absorption and the equilibrium water content. Cytotoxicity testing by the direct contact method with mouse fibroblast L929 cells indicated that the synthesized hydrogels were nontoxic. On the basis of these results, it is considered that photopolymerized Na-AMPS hydrogels crosslinked with PEGDA show considerable potential for biomedical use as dressings for partial thickness burns. This paper describes some structural effects which are relevant to their design as biomaterials for this particular application. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
OBJECTIVE. Our objective with this study was to examine whether observed maternal control during feeding at 6 months of age moderates the development of early infant weight gain during the first year of life. METHODS. Sixty-nine women were observed feeding their 6-month-old infants during a standard meal. Mealtimes were coded for maternal use of controlling feeding behavior. All infants were weighed at birth and at 6 and 12 months of age, and weight gain was calculated from birth to 6 months and from 6 to 12 months. Weight scores and weight gain scores were standardized for prematurity, age, and gender. RESULTS. Infant weight gain between 6 and 12 months of age was predicted by an interaction between early infant weight gain (birth to 6 months) and observed maternal control during feeding at 6 months. When maternal control was moderate or low, there was a significant interaction with weight gain from birth to 6 months in the prediction of later infant weight gain from 6 to 12 months, such that infants who showed slow early weight gain accelerated in their subsequent weight gain, and those with greater early weight gain decelerated. Conversely, when maternal control was high, infant weight gain followed the opposite pattern. CONCLUSION. Maternal control of solid feeding can moderate infant weight gain.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.