4 resultados para US-China BIT
em Aston University Research Archive
Resumo:
Key features include: • Discussion of language in relation to various aspects of identity, such as those connected with nation and region, as well as in relation to social aspects such as social class and race. • A chapter on undertaking research that will equip students with appropriate research methods for their own projects. • An analysis of language and identity within the context of written as well as spoken texts. Language and Identity in Englishes examines the core issues and debates surrounding the relationship between English, language and identity. Drawing on a range of international examples from the UK, US, China and India, Clark uses both cutting-edge fieldwork and her own original research to give a comprehensive account of the study of language and identity. With its accessible structure, international scope and the inclusion of leading research in the area, this book is ideal for any student taking modules in language and identity or sociolinguistics.
Resumo:
This paper analyzes the impact of Research and Development (R&D) on the productivity of China's high technology industry. In order to capture important differences in the effect of R&D on output that arise from geographic and socioeconomic differences across three major regions in China, we use a novel semiparametric approach that allows us to model heterogeneities across provinces and time. Using a unique provincial level panel dataset spanning the period 2000–2007, we find that the impact of R&D on output varies substantially in terms of magnitude and significance across different regions. Results show that the eastern region benefits the most from R&D investments, however it benefits the least from technical progress, while the western region benefits the least from R&D investments, but enjoys the highest benefits from technical progress. The central region benefits from R&D investments more than the western region and benefits from technical progress more than the eastern region. Our results suggest that R&D investments would significantly increase output in both the eastern and central regions, however technical progress in the central region may further compound the effects of R&D on output within the region.
Resumo:
The distribution of the secret key is the weakest link of many data encryption systems. Quantum key distribution (QKD) schemes provide attractive solutions [1], however their implementation remains challenging and their range and bit-rate are limited. Moreover, practical QKD systems, employ real-life components and are, therefore, vulnerable to diverse attack schemes [2]. Ultra-Long fiber lasers (UFLs) have been drawing much attention recently because of their fundamentally different properties compared to conventional lasers as well as their unique applications [3]. Here, we demonstrate a 100Bps, practically secure key distribution, over a 500km link, employing Raman gain UFL. Fig. 1(a) depicts a schematic of the UFL system. Each user has an identical set of two wavelength selective mirrors centered at l0 and l 1. In order to exchange a key-bit, each user independently choose one of these mirrors and introduces it as a laser reflector at their end. If both users choose identical mirrors, a clear signal develops and the bits in these cases are discarded. However if they choose complementary mirrors, (1, 0 or 0, 1 states), the UFL remains below lasing threshold and no signal evolves. In these cases, an eavesdropper can only detect noise and is unable to determine the mirror choice of the users, where the choice of mirrors represent a single key bit (e.g. Alice's choice of mirror is the key-bit). These bits are kept and added to the key. The absence of signal in the secure states faxilitates fast measurements to distinguish between the non-secure and the secure states and to determine the key-bit in the later case, Sequentially reapeating the single bit exchange protocol generate the entire keys of any desirable length. © 2013 IEEE.
Resumo:
We demonstrate an accurate BER estimation method for QPSK CO-OFDM transmission based on the probability density function of the received QPSK symbols. Using a 112Gbs QPSK CO-OFDM transmission as an example, we show that this method offers the most accurate estimate of the system's performance in comparison with other known approaches.