5 resultados para URANIUM 235

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A large body of evidence supports a role of oxidative stress in Alzheimer disease (AD) and in cerebrovascular disease. A vascular component might be critical in the pathophysiology of AD. Objective(s): To evaluate the simultaneous behavior of a broad spectrum of peripheral antioxidants and biomarkers of oxidative stress in AD and vascular dementia (VaD). Methods: Sixty-three AD patients, 23 VaD patients and 55 controls were included in the study. We measured plasma levels of water-soluble (vitamin C and uric acid) and lipophilic (vitamin E, vitamin A, carotenoids including lutein, zeaxanthin, [3-cryptoxanthin, lycopene, c~- and [3-carotene) antioxidant micronutrients as well as levels of biomarkers of lipid peroxidation [malondialdehyde (MDA)] and of protein oxidation [immunoglobniin G (Ig G) levels of protein carbonyls and dityrosine] in patients and controls. Results: AD and VaD patients showed significantly decreased plasma levels of the water-soluble vitamin C and uric acid, of the lipophilic vitamin Eand vitamin A, and of the carotenoids lutein, zeaxanthin, 13-cryptoxanthin, lycopene and (x-carotene as compared to controls; among biomarkers of oxidative stress, only the content of dityrosine in Ig G was found to be significantly higher (p < 0.01) in AD patients as compared to controls; although a trend towards higher levels of dityrosine was also observed in VaD subjects compared to controls (6.3 4- 1.7 ~M in VaD patients vs. 5.1 4- 1.6 IxM in controls; p = 0.06), it did not reach statistical significance. In a cumulative analysis of all patient samples, a significant inverse association was found between plasma lycopene and MDA levels (r = -0.53, p < 0.0001). Conclusions: Independent of its nature-vascular or degenerativedementia is associated with the depletion of a large spectrum of antioxidant micronutrients and with increased protein oxidative modification. This might be relevant to the pathophysiology of dementing disorders, particularly in light of the recently suggested importance of the vascular component in AD development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineralogical investigations have determined the sites of u and Th associated with two radioelement-enriched granites from different geological settings. In the Ririwai ring complex, Nigeria, the u- and Th-bearing accessories have been greatly affected by post-magmatic alteration of the biotite granite. Primary thorite, zircon and monazite were altered to Zr(±Y)-rich thorite, partially metamict zircon (enriched in Th, U, Y, P, Fe, Mn, Ca) and an unidentified LREE-phase respectively, by pervasive fluids which later precipitated Zr-rich coffinite. More intense, localised alteration and albitisation completely remobilised primary accessories and gave rise to a distinctive generation of haematite- and uranothorite-enriched zircon with clear, Hi-enriched rims and xenotime overgrowths. In the Ririwai lode, microclinisation and later greisenisation locally remobilised or altered zircon and deposited Y-ricl1 coffinite and Y(±Zr)-rich thorite which was overgrown by traces of xenotime and LREE-phase(s) of complex and variable composition. Compositions indicating extensive solid-solution among thorite, coffinite, xenotime and altered zircon are probably metastable and formed at low temperatures. The widespread occurrence of REE-rich fluorite suggests that F-complexing aided the mobility of REE, Y, U, Th and Zr during late-magmatic to post-magmatic alteration, while uranyl-carbonate complexing may have occurred during albitisation. The Caledonian, Helmsdale granite in northern Scotland has undergone pervasive and localised hydrothermal alteration associated with U enrichment. Zircon xenocrysts, primary sphene and apatite contain a small.proportion of this U which is largely adsorbed on to secondary iron-oxide, TiOand phyllosilicates.Additional sites for U in the overlying, Lower Devonian Ousdale arkose include coffinite, secondary uranyl phosphates, hydrocarbon and traces of xenotime and unidentified LREE-phases. U may have been leached from the granite and deposited in the arkose, along channelways associated with the Helmsdale fault, by convecting, hydrothermal fluids