4 resultados para UNPREDICTABLE MILD STRESS
em Aston University Research Archive
Resumo:
Background: Emotional eating in children has been related to the consumption of energy-dense foods and obesity, but the development of emotional eating in young children is poorly understood. Objectives: We evaluated whether emotional eating can be induced in 5-7-y-old children in the laboratory and assessed whether parental use of overly controlling feeding practices at 3-5 y of age predicts a greater subsequent tendency for children to eat under conditions of mild stress at ages 5-7 y. Design: Forty-one parent-child dyads were recruited to participate in this longitudinal study, which involved parents and children being observed consuming a standard lunch, completing questionnaire measures of parental feeding practices, participating in a research procedure to induce child emotion (or a control procedure), and observing children's consumption of snack foods. Results: Children at ages 5-7 y who were exposed to a mild emotional stressor consumed significantly more calories from snack foods in the absence of hunger than did children in a control group. Parents who reported the use of more food as a reward and restriction of food for health reasons with their children at ages 3-5 y were more likely to have children who ate more under conditions of negative emotion at ages 5-7 y. Conclusions: Parents who overly control children's food intake may unintentionally teach children to rely on palatable foods to cope with negative emotions. Additional research is needed to evaluate the implications of these findings for children's food intake and weight outside of the laboratory setting. This trial was registered at clinicaltrials.gov as NCT01122290.
Resumo:
Pulsating; tension fatigue tests have been carried out on edge notched specimens of a mild steel. An electrical potential drop technique was used to determine the number of cycles taken to initiate cracks and the rate at which the cracks grew across the specimen. The results could be described by the range of stress intensity factor, which for crack initiation was modified to take account of the notch root radius. Analysis of elastic stress distributions at cracks and notches and models of plasticity at crack tips are used to discuss the results. Limited evidence in the literature indicates that the fracture mechanics approach may provide a general description of crack initiation and growth in notched specimens, and a simple graphical method of calculating fatigue lives is described. The results are used to illustrate the effects of specimen size and geometry on the fatigue life of notched specimens. The relevance of the work to the assessment of the significance of defects in welds is discussed.
Resumo:
Muscle wasting in cancer cachexia is associated with increased levels of malondialdehyde (MDA) in gastrocnemius muscles, suggesting an increased oxidative stress. To determine whether oxidative stress contributes to muscle protein catabolism, an in vitro model system, consisting of C2C12 myotubes, was treated with either 0.2 mM FeSO4, 0.1 mM H2O2, or both, to replicate the rise in MDA content in cachexia. All treatments caused an increased protein catabolism and a decreased myosin expression. There was an increase in the proteasome chymotrypsin-like enzyme activity, while immunoblotting showed an increased expression of the 20S proteasome α-subunits, p42, and the ubiquitin-conjugating enzyme, E214k. These results show that mild oxidative stress increases protein degradation in skeletal muscle by causing an increased expression of the major components of the ubiquitin-proteasome pathway. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
A number of investigators have studied the application of oscillatory energy to a metal undergoing plastic deformation. Their results have shown that oscillatory stresses reduce both the stress required to initiate plastic deformation and the friction forces between the tool and workpiece. The first two sections in this thesis discuss historically and technically the devolopment of the use of oscillatory energy techniques to aid metal forming with particular reference to wire drawing. The remainder of the thesis discusses the research undertaken to study the effect of applying longitudinal oscillations to wire drawing. Oscillations were supplied from an electric hydraulic vibrator at frequencies in the range 25 to 500 c/s., and drawing tests were performed at drawing speeds up to 50 ft/m. on a 2000 lbf. bull-block. Equipment was designed to measure the drawing force, drawing torque, amplitude of die and drum oscillation and drawing speed. Reasons are given for selecting mild steel, pure and hard aluminium, stainless steel and hard copper as the materials to be drawn, and the experimental procedure and calibration of measuring equipment arc described. Results show that when oscillatory stresses are applied at frequencies within the range investigated : (a) There is no reduction in the maximum drawing load. (b) Using sodium stearate lubricant there is a negligible reduction in the coefficient of friction between the die and wire. (c) Pure aluminium does not absorb sufficient oscillatory energy to ease the movement of dislocations. (d) Hard aluminium is not softened by oscillatory energy accelerating the diffusion process. (e) Hard copper is not cyclically softened. A vibration analysis of the bull-block and wire showed that oscillatory drawiing in this frequency range, is a mechanical process of straining; and unstraining the drawn wire, and is dependent upon the stiffness of the material being drawn and the drawing machine. Directions which further work should take are suggested.