3 resultados para Typical Meteorological Year
em Aston University Research Archive
Resumo:
Three novel solar thermal collector concepts derived from the Linear Fresnel Reflector (LFR) are developed and evaluated through a multi-criteria decision-making methodology, comprising the following techniques: Quality Function Deployment (QFD), the Analytical Hierarchy Process (AHP) and the Pugh selection matrix. Criteria are specified by technical and customer requirements gathered from Gujarat, India. The concepts are compared to a standard LFR for reference, and as a result, a novel 'Elevation Linear Fresnel Reflector' (ELFR) concept using elevating mirrors is selected. A detailed version of this concept is proposed and compared against two standard LFR configurations, one using constant and the other using variable horizontal mirror spacing. Annual performance is analysed for a typical meteorological year. Financial assessment is made through the construction of a prototype. The novel LFR has an annual optical efficiency of 49% and increases exergy by 13-23%. Operational hours above a target temperature of 300 C are increased by 9-24%. A 17% reduction in land usage is also achievable. However, the ELFR suffers from additional complexity and a 16-28% increase in capital cost. It is concluded that this novel design is particularly promising for industrial applications and locations with restricted land availability or high land costs. The decision analysis methodology adopted is considered to have a wider potential for applications in the fields of renewable energy and sustainable design. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
A need was indicated for the identification of a possible new solar energy product to improve the sales potential of a metal film with a selective surface, manufactured by the industriaI sponsor of this project (INCO). A possible way of overcoming the disadvantageous economics of solar energy collection was identified. This utilised the collection of solar energy by the walls of buildings constructed in such a manner as to allow the transfer of energy into the building, whilst providing adequate thermal insulation in the absence of sunlight. The actual collection element of the wall, being metallic, is also capable of performing the function of a low temperature heating .system in the absence of sunlight. As a result of this, the proposed system, by displacing both the wall and centraI heating system which would otherwise be necessary, demonstrates economic benefits over systems which are constructed solely for the purpose of collecting solar energy. The necessary thermodynamic and meteorological. characteristics and data: are established, and applied to a typical urban site in the North of England, for a typical average year, with and without a shading device incorporated into the construction. It is concluded that the proposed system may offer considerable benefit in reducing the effective heating season in all orientations of wall.
Resumo:
In many areas of northern India, salinity renders groundwater unsuitable for drinking and even for irrigation. Though membrane treatment can be used to remove the salt, there are some drawbacks to this approach e.g. (1) depletion of the groundwater due to over-abstraction, (2) saline contamination of surface water and soil caused by concentrate disposal and (3) high electricity usage. To address these issues, a system is proposed in which a photovoltaic-powered reverse osmosis (RO) system is used to irrigate a greenhouse (GH) in a stand-alone arrangement. The concentrate from the RO is supplied to an evaporative cooling system, thus reducing the volume of the concentrate so that finally it can be evaporated in a pond to solid for safe disposal. Based on typical meteorological data for Delhi, calculations based on mass and energy balance are presented to assess the sizing and cost of the system. It is shown that solar radiation, freshwater output and evapotranspiration demand are readily matched due to the approximately linear relation among these variables. The demand for concentrate varies independently, however, thus favouring the use of a variable recovery arrangement. Though enough water may be harvested from the GH roof to provide year-round irrigation, this would require considerable storage. Some practical options for storage tanks are discussed. An alternative use of rainwater is in misting to reduce peak temperatures in the summer. An example optimised design provides internal temperatures below 30EC (monthly average daily maxima) for 8 months of the year and costs about €36,000 for the whole system with GH floor area of 1000 m2 . Further work is needed to assess technical risks relating to scale-deposition in the membrane and evaporative pads, and to develop a business model that will allow such a project to succeed in the Indian rural context.