12 resultados para Two-loop-calculations, LEP, ILC
em Aston University Research Archive
Resumo:
We demonstrate bandpass nonlinear switching, using a novel device configuration based on a nonlinear-optical loop mirror and an in-fiber Bragg grating. Self-switching is demonstrated in the soliton regime by use of an asymmetrically arranged in-fiber Bragg grating as a wavelength-selective element. In addition, we adapt the configuration to perform efficient two-wavelength switching.
Resumo:
We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics.
Resumo:
The development of an all-optical communications infrastructure requires appropriate optical switching devices and supporting hardware. This thesis presents several novel fibre lasers which are useful pulse sources for high speed optical data processing and communications. They share several attributes in common: flexibility, stability and low-jitter output. They all produce short (picosecond) and are suitable as sources for soliton systems. The lasers are all-fibre systems using erbium-doped fibre for gain, and are actively-modelocked using a dual-wavelength nonlinear optical loop mirror (NOLM) as a modulator. Control over the operating wavelength and intra-cavity dispersion is obtained using a chirped in-fibre Bragg grating.Systems operating both at 76MHz and gigahertz frequencies are presented, the latter using a semiconductor laser amplifier to enhance nonlinear action in the loop mirror. A novel dual-wavelength system in which two linear cavities share a common modulator is presented with results which show that the jitter between the two wavelengths is low enough for use in switching experiments with data rates of up to 130Gbit/s.
Resumo:
The widespread implementation of Manufacturing Resource Planning (MRPII) systems in this country and abroad and the reported dissatisfaction with their use formed the initial basis of this piece of research which concentrates on the fundamental theory and design of the Closed Loop MRPII system itself. The dissertation concentrates on two key aspects namely; how Master Production Scheduling is carried out in differing business environments and how well the `closing of the loop' operates by checking the capcity requirements of the different levels of plans within an organisation. The main hypothesis which is tested is that in U.K. manufacturing industry, resource checks are either not being carried out satisfactorily or they are not being fed back to the appropriate plan in a timely fashion. The research methodology employed involved initial detailed investigations into Master Scheduling and capacity planning in eight diverse manufacturing companies. This was followed by a nationwide survey of users in 349 companies, a survey of all the major suppliers of Production Management software in the U.K. and an analysis of the facilities offered by current software packages. The main conclusion which is drawn is that the hypothesis is proved in the majority of companies in that only just over 50% of companies are attempting Resource and Capacity Planning and only 20% are successfully feeding back CRP information to `close the loop'. Various causative factors are put forward and remedies are suggested.
Resumo:
Multidrug resistance protein MRP1 mediates the ATP-dependent efflux of many chemotherapeutic agents and organic anions. MRP1 has two nucleotide binding sites (NBSs) and three membrane spanning domains (MSDs) containing 17 transmembrane helices linked by extracellular and cytoplasmic loops (CL). Homology models suggest that CL7 (amino acids 1141-1195) is in a position where it could participate in signaling between the MSDs and NBSs during the transport process. We have individually replaced eight charged residues in CL7 with Ala, and in some cases, an amino acid with the same charge, and then investigated the effects on MRP1 expression, transport activity, and nucleotide and substrate interactions. A triple mutant in which Glu(1169), Glu(1170), and Glu(1172) were all replaced with Ala was also examined. The properties of R1173A and E1184A were comparable with those of wild-type MRP1, whereas the remaining mutants were either poorly expressed (R1166A, D1183A) or exhibited reduced transport of one or more organic anions (E1144A, D1179A, K1181A, (1169)AAQA). Same charge mutant D1183E was also not expressed, whereas expression and activity of R1166K were similar to wild-type MRP1. The moderate substrate-selective changes in transport activity displayed by mutants E1144A, D1179A, K1181A, and (1169)AAQA were accompanied by changes in orthovanadate-induced trapping of [alpha-(32)P]azidoADP by NBS2 indicating changes in ATP hydrolysis or release of ADP. In the case of E1144A, estradiol glucuronide no longer inhibited trapping of azidoADP. Together, our results demonstrate the extreme sensitivity of CL7 to mutation, consistent with its critical and complex dual role in both the proper folding and transport activity of MRP1.
Resumo:
A novel device configuration is used to demonstrate wavelength-confined, a bandpass, switching in a nonlinear-optical loop mirror (WOLM). Demonstrated is a self-switching in the soliton regime using a partially reflecting Bragg grating as a wavelength-dependent loss element. Two wavelength operation in which a signal is switched through the use of cross phase modulation, are demonstrated. Observed is the operation of the device confined to wavelengths defined by the grating reflection band.
Resumo:
Nitration of tyrosine in proteins and peptides is a post-translational modification that occurs under conditions of oxidative stress. It is implicated in a variety of medical conditions, including neurodegenerative and cardiovascular diseases. However, monitoring tyrosine nitration and understanding its role in modifying biological function remains a major challenge. In this work, we investigate the use of electron-vibration-vibration (EVV) two-dimensional infrared (2DIR) spectroscopy for the study of tyrosine nitration in model peptides. We demonstrate the ability of EVV 2DIR spectroscopy to differentiate between the neutral and deprotonated states of 3-nitrotyrosine, and we characterize their spectral signatures using information obtained from quantum chemistry calculations and simulated EVV 2DIR spectra. To test the sensitivity of the technique, we use mixed-peptide samples containing various levels of tyrosine nitration, and we use mass spectrometry to independently verify the level of nitration. We conclude that EVV 2DIR spectroscopy is able to provide detailed spectroscopic information on peptide side-chain modifications and to detect nitration levels down to 1%. We further propose that lower nitration levels could be detected by introducing a resonant Raman probe step to increase the detection sensitivity of EVV 2DIR spectroscopy. (Graph Presented).
Resumo:
In this review, we summarize three sets of findings that have recently been observed in thalamic astrocytes and neurons, and discuss their significance for thalamocortical loop dynamics. (i) A physiologically relevant ‘window’ component of the low–voltage–activated, T–type Ca2+ current (ITwindow) plays an essential part in the slow (less than 1 Hz) sleep oscillation in adult thalamocortical (TC) neurons, indicating that the expression of this fundamental sleep rhythm in these neurons is not a simple reflection of cortical network activity. It is also likely that ITwindow underlies one of the cellular mechanisms enabling TC neurons to produce burst firing in response to novel sensory stimuli. (ii) Both electrophysiological and dye–injection experiments support the existence of gap junction–mediated coupling among young and adult TC neurons. This finding indicates that electrical coupling–mediated synchronization might be implicated in the high and low frequency oscillatory activities expressed by this type of thalamic neuron. (iii) Spontaneous intracellular Ca2+ ([Ca2+]i) waves propagating among thalamic astrocytes are able to elicit large and long–lasting N–methyl–D–aspartate–mediated currents in TC neurons. The peculiar developmental profile within the first two postnatal weeks of these astrocytic [Ca2+]i transients and the selective activation of these glutamate receptors point to a role for this astrocyte–to–neuron signalling mechanism in the topographic wiring of the thalamocortical loop. As some of these novel cellular and intracellular properties are not restricted to thalamic astrocytes and neurons, their significance may well apply to (patho)physiological functions of glial and neuronal elements in other brain areas.
Resumo:
The behavior of a semiconductor optical amplifier (SOA)-based nonlinear loop mirror with feedback has been investigated as a potential device for all-optical signal processing. In the feedback device, input signal pulses (ones) are injected into the loop, and amplified reflected pulses are fed back into the loop as switching pulses. The feedback device has two stable modes of operation - block mode, where alternating blocks of ones and zeros are observed, and spontaneous clock division mode, where halving of the input repetition rate is achieved. Improved models of the feedback device have been developed to study its performance in different operating conditions. The feedback device could be optimized to give a choice of either of the two stable modes by shifting the arrival time of the switching pulses at the SOA. Theoretically, it was found possible to operate the device at only tens of fJ switching pulse energies if the SOA is biased to produce very high gain in the presence of internal loss. The clock division regime arises from the combination of incomplete SOA gain recovery and memory of the startup sequence that is provided by the feedback. Clock division requires a sufficiently high differential phase shift per unit differential gain, which is related to the SOA linewidth enhancement factor.
Resumo:
We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics.
Resumo:
PURPOSE: To compare the Parr-Hubbard and Knudtson formulas to calculate retinal vessel calibers and to examine the effect of omitting vessels on the overall result. METHODS: We calculated the central retinal arterial equivalent (CRAE) and central retinal venular equivalent (CRVE) according to the formulas described by Parr-Hubbard and Knudtson including the six largest retinal arterioles and venules crossing through a concentric ring segment (measurement zone) around the optic nerve head. Once calculated, we removed one arbitrarily selected artery and one arbitrarily selected vein and recalculated all outcome parameters again for (1) omitting one artery only, (2) omitting one vein only, and (3) omitting one artery and one vein. All parameters were compared against each other. RESULTS: Both methods showed good correlation (r for CRAE = 0.58; r for CRVE = 0.84), but absolute values for CRAE and CRVE were significantly different from each other when comparing both methods (p < 0.000001): CRAE had higher values for the Parr-Hubbard (165 [±16] μm) method compared with the Knudtson method (148 [±15] μm). In addition, CRAE and CRVE values dropped for both methods when omitting one arbitrarily selected vessel each (all p < 0.000001). Arteriovenous ratio (AVR) calculations showed a similar change for both methods when omitting one vessel each: AVR decreased when omitting one arteriole whereas it increased when omitting one venule. No change, however, was observed for AVR calculated with six or five vessel pairs each. CONCLUSIONS: Although the absolute value for CRAE and CRVE is changing significantly depending on the number of vessels included, AVR appears to be comparable as long as the same number of arterioles and venules is included.
Resumo:
A rapid and efficient method to identify the weak points of the complex chemical structure of low band gap (LBG) polymers, designed for efficient solar cells, when submitted to light exposure is reported. This tool combines Electron Paramagnetic Resonance (EPR) using the 'spin trapping method' coupled with density functional theory modelling (DFT). First, the nature of the short life-time radicals formed during the early-stages of photo-degradation processes are determined by a spin-trapping technique. Two kinds of short life-time radical (R and R′O) are formed after 'short-duration' illumination in an inert atmosphere and in ambient air, respectively. Second, simulation allows the identification of the chemical structures of these radicals revealing the most probable photochemical process, namely homolytical scission between the Si atom of the conjugated skeleton and its pendent side-chains. Finally, DFT calculations confirm the homolytical cleavage observed by EPR, as well as the presence of a group that is highly susceptible to photooxidative attack. Therefore, the synergetic coupling of a spin trapping method with DFT calculations is shown to be a rapid and efficient method for providing unprecedented information on photochemical mechanisms. This approach will allow the design of LBG polymers without the need to trial the material within actual solar cell devices, an often long and costly screening procedure.