12 resultados para Tungsten carbide

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bearings in the air motors of modern jet aircraft engines must operate dry in hostile conditions at temperatures up to 500° C, where the thrust races in the actuators operate at temperatures up to 300° C. One of the few metallurgical combinations which can function efficiently under these conditions is martensitic stainless steel on tungsten carbide. The work described was initiated to isolate the wear mechanisms of two such steels in contact with tungsten carbide at temperatures up to 500° C. Experiments were carried out on angular contact bearings similar to these used in service, where both rolling and sliding is present and also for pure sliding conditions using a pin-on-disc apparatus. Wear measurements of the bearings were obtained with wear rates, friction and surface temperatures from the pin-on-disc machine for a series of loads and speeds. Extensive X-ray diffraction analysis was carried out on the wear debris, with also S.E.M. analysis and hardness tests on the worn surfaces along with profilometry measurements of the disc. The oxidational parameters of the steel were obtained from measurements of oxide growth rates by ellipsometry. Three distinct mechanisms of wear were established and the latter two were found to be present in both configurations. These involve an oxidational-abrasive mechanism at loads below 40 N with pin surface temperatures up to about 300 °C, with the mechanism changing to severe wear for higher loads. As the temperature increases a third wear mechanism appears due to transfer of relatively soft oxide films to the steel surface reducing the wear rate. Theoretical K factors were derived and compared with experimental values which were found to be in good agreement for the severe wear mechanism. The pin-on-disc experiments may be useful as a screening test for material selection, without the considerable cost of producing the angular contact bearings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work describes the programme of activities relating to a mechanical study of the Conform extrusion process. The main objective was to provide a basic understanding of the mechanics of the Conform process with particular emphasis placed on modelling using experimental and theoretical considerations. The experimental equipment used includes a state of the art computer-aided data-logging system and high temperature loadcells (up to 260oC) manufactured from tungsten carbide. Full details of the experimental equipment is presented in sections 3 and 4. A theoretical model is given in Section 5. The model presented is based on the upper bound theorem using a variation of the existing extrusion theories combined with temperature changes in the feed metal across the deformation zone. In addition, constitutive equations used in the model have been generated from existing experimental data. Theoretical and experimental data are presented in tabular form in Section 6. The discussion of results includes a comprehensive graphical presentation of the experimental and theoretical data. The main findings are: (i) the establishment of stress/strain relationships and an energy balance in order to study the factors affecting redundant work, and hence a model suitable for design purposes; (ii) optimisation of the process, by determination of the extrusion pressure for the range of reduction and changes in the extrusion chamber geometry at lower wheel speeds; and (iii) an understanding of the control of the peak temperature reach during extrusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Economic factors such as the rise in cost of raw materials, labour and power, are compelling manufacturers of cold-drawn polygonal sections, to seek new production routes which will enable the expansion in the varieties of metals used and the inclusion of difficult-to-draw materials. One such method generating considerable industrial interest is the drawing of polygonal sections from round at elevated temperature. The technique of drawing mild steel, medium carbon steel and boron steel wire into octagonal, hexagonal and square sections from round at up to 850 deg C and 50% reduction of area in one pass has been established. The main objective was to provide a basic understanding of the process, with particular emphasis being placed on modelling using both experimental and theoretical considerations. Elevated temperature stress-strain data was obtained using a modified torsion testing machine. Data were used in the upper bound solution derived and solved numerically to predict drawing stress strain, strain-rate, temperature and flow stress distribution in the deforming zone for a range of variables. The success of this warm working process will, of course, depend on the use of a satisfactory elevated temperature lubricant, an efficient cooling system, a suitable tool material having good wear and thermal shock resistance and an efficient die profile design which incorporates the principle of least work. The merits and demerits of die materials such as tungsten carbide, chromium carbide, Syalon and Stellite are discussed, principally from the standpoint of minimising drawing force and die wear. Generally, the experimental and theoretical results were in good agreement, the drawing stress could be predicted within close limits and the process proved to be technically feasible. Finite element analysis has been carried out on the various die geometries and die materials, to gain a greater understanding of the behaviour of these dies under the process of elevated temperature drawing, and to establish the temperature distribution and thermal distortion in the deforming zone, thus establishing the optimum die design and die material for the process. It is now possible to predict, for the materials already tested, (i) the optimum drawing temperature range, (ii) the maximum possible reduction of area per pass, (iii) the optimum drawing die profiles and die materials, (iv) the most efficient lubricant in terms of reducing the drawing force and die wear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The.use of high-chromium cast irons for abrasive wear resistance is restricted due to their poor fracture toughness properties. An.attempt was made to improve the fracture characteristics by altering the distribution, size and.shape of the eutectic carbide phase without sacrificing their excellent wear resistance. This was achieved by additions of molybdenum or tungsten followed by high temperature heat treatments. The absence of these alloying elements or replacement of them with vanadium or manganese did not show any significant effect and the continuous eutectic carbide morphology remained the same after application of high temperature heat treatments. The fracture characteristics of the alloys with these metallurgical variables were evaluated for both sharp-cracks and blunt notches. The results were used in conjunction with metallographic and fractographic observations to establish possible failure mechanisms. The fracture mechanism of the austenitic alloys was found to be controlled not only by the volume percent but was also greatly influenced by the size and distribution of the eutectic carbides. On the other hand, the fracture mechanism of martensitic alloys was independent of the eutectic carbide morphology. The uniformity of the secondary carbide precipitation during hardening heat treatments was shown to be a reason for consistant fracture toughness results being obtained with this series of alloys although their eutectic carbide morphologies were different. The collected data were applied to a model which incorporated the microstructural parameters and correlated them with the experimentally obtained valid stress intensity factors. The stress intensity coefficients of different short-bar fracture toughness test specimens were evaluated from analytical and experimental compliance studies. The.validity and applicability of this non-standard testing technique for determination of the fracture toughness of high-chromium cast irons were investigated. The results obtained correlated well with the valid results obtained from standard fracture toughness tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to improve some of the less desirable properties of bio-oil via the catalytic fast pyrolysis of sugarcane bagasse using a novel supported molybdenum carbide (20 wt.% MoC/AlO ) catalyst. Proximate and elemental analysis of the bagasse were carried out to determine the moisture, ash, carbon, hydrogen, nitrogen and oxygen content. The ground pellets were classified in sieves to a size range of 0.25-1 mm and were pyrolysed in a 300 g h fluidised bed reactor at 500 C. MoC/AlO replaced the sand in the fluidised bed reactor in different proportions (0 wt.%, 12 wt.%, 25 wt.% and 50 wt.%) to investigate the effect of this catalyst on the pyrolysis products. Bio-oil yield results showed that ground sugarcane bagasse pellets gave high organic yields in the bio-oil of 60.5 wt.% on dry feed with a total liquid yield of 73.1 wt.% on dry feed without catalyst. Increasing the catalyst proportions in the fluidised bed reduced bio-oil yields, significantly reduced sugars (as a-levoglucosan) concentration and increased furanics and phenolics concentration in the bio-oil. It was observed that the higher the concentration of the 20 wt.% MoC/AlO catalyst in the fluidised bed the lower the viscosity of the bio-oil. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon carbide ceramics are candidate materials for use in aggressive environments, including those where aqueous acids are present. Standard corrosion testing methods such as immersion testing are not always sufficiently sensitive for these ceramics owing to the very low, almost unobservable, corrosion rates encountered. Using electrochemical methods the corrosion processes can be assisted, leading to higher rates and thus the elucidation of reaction mechanisms. The behaviour of a sintered and a reaction bonded silicon carbide has been investigated in aqueous HCl, HF, HNO3, and H2SO4, using standard immersion and new electrochemical methods. Both materials were passive in HCl, HNO3, and H2SO4 because of the formation of a surface silica film, and were active in HF. In HF, corrosion of sintered silicon carbide was slight and the residual silicon was removed from reaction bonded specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of zirconium phosphate supported WOx solid acid catalysts with W loadings from 1–25 wt% have been prepared on high surface area zirconium phosphate by a surface grafting method. Catalysts were characterized by N2 adsorption, FTIR, Raman, UV-Vis, 31P MAS NMR, pyridine TPD and X-ray methods. Spectroscopic measurements suggest a Keggin-type structure forms on the surface of zirconium phosphate as a ([triple bond, length as m-dash]ZrOH2+)(ZrPW11O405−) species. All catalysts show high activity in palmitic acid esterification with methanol. These materials can be readily separated from the reaction system for re-use, and are resistant to leaching of the active heteropolyacid, suggesting potential industrial applications in biodiesel synthesis. © The Royal Society of Chemistry 2006.