7 resultados para Tubular steel structures
em Aston University Research Archive
Resumo:
The object of this thesis is to develop a method for calculating the losses developed in steel conductors of circular cross-section and at temperatures below 100oC, by the direct passage of a sinusoidally alternating current. Three cases are considered. 1. Isolated solid or tubular conductor. 2. Concentric arrangement of tube and solid return conductor. 3. Concentric arrangement of two tubes. These cases find applications in process temperature maintenance of pipelines, resistance heating of bars and design of bus-bars. The problems associated with the non-linearity of steel are examined. Resistance heating of bars and methods of surface heating of pipelines are briefly described. Magnetic-linear solutions based on Maxwell's equations are critically examined and conditions under which various formulae apply investigated. The conditions under which a tube is electrically equivalent to a solid conductor and to a semi-infinite plate are derived. Existing solutions for the calculation of losses in isolated steel conductors of circular cross-section are reviewed, evaluated and compared. Two methods of solution are developed for the three cases considered. The first is based on the magnetic-linear solutions and offers an alternative to the available methods which are not universal. The second solution extends the existing B/H step-function approximation method to small diameter conductors and to tubes in isolation or in a concentric arrangement. A comprehensive experimental investigation is presented for cases 1 and 2 above which confirms the validity of the proposed methods of solution. These are further supported by experimental results reported in the literature. Good agreement is obtained between measured and calculated loss values for surface field strengths beyond the linear part of the d.c. magnetisation characteristic. It is also shown that there is a difference in the electrical behaviour of a small diameter conductor or thin tube under resistance or induction heating conditions.
Resumo:
Much research is currently centred on the detection of damage in structures using vibrational data. The work presented here examined several areas of interest in support of a practical technique for identifying and locating damage within bridge structures using apparent changes in their vibrational response to known excitation. The proposed goals of such a technique included the need for the measurement system to be operated on site by a minimum number of staff and that the procedure should be as non-invasive to the bridge traffic-flow as possible. Initially the research investigated changes in the vibrational bending characteristics of two series of large-scale model bridge-beams in the laboratory and these included ordinary-reinforced and post-tensioned, prestressed designs. Each beam was progressively damaged at predetermined positions and its vibrational response to impact excitation was analysed. For the load-regime utilised the results suggested that the infuced damage manifested itself as a function of the span of a beam rather than a localised area. A power-law relating apparent damage with the applied loading and prestress levels was then proposed, together with a qualitative vibrational measure of structural damage. In parallel with the laboratory experiments a series of tests were undertaken at the sites of a number of highway bridges. The bridges selected had differing types of construction and geometric design including composite-concrete, concrete slab-and-beam, concrete-slab with supporting steel-troughing constructions together with regular-rectangular, skewed and heavily-skewed geometries. Initial investigations were made of the feasibility and reliability of various methods of structure excitation including traffic and impulse methods. It was found that localised impact using a sledge-hammer was ideal for the purposes of this work and that a cartridge `bolt-gun' could be used in some specific cases.
Resumo:
This thesis investigates the role of accounting in planning and control in the Egyptian Iron and Steel Company "Hadisolb". The hypothesis is that there should be planning and control at appropriate levels, with a significant accounting involvement, In an organisation such as the Egyptian Iron and Steel Company "Hadisolb" . Part One of the thesis explains the role of accounting in planning and control, with special emphasis on its role in long-range corporate planning and control. Parts Two and Three review the history of the Egyptian Iron and Steel Company "Hadisolb", its organisation and structure, also the role of accounting in its planning and control arrangements, together with comments and criticisms concerning this. Part Four is mainly recommendations for alterations or improvements in planning and control in Hadisolb. This includes a suggested planning and organisation structure, physical and cost control reporting structures.
Resumo:
In this Thesis, details of a proposed method for the elastic-plastic failure load analysis of complete building structures are given. In order to handle the problem, a computer programme in Atlas Autocode is produced. The structures consist of a number of parallel shear walls and intermediate frames connected by floor slabs. The results of an experimental investigation are given to verify the theoretical results and to demonstrate various factors that may influence the behaviour of these structures. Large full scale practical structures are also analysed by the proposed method and suggestions are made for achieving design economy as well as for extending research in various aspects of this field. The existing programme for elastic-plastic analysis of large frames is modified to allow for the effect of composite action of structural members, i.e. reinforced concrete floor slabs and the supporting steel beams. This modified programme is used to analyse some framed type structures with composite action as well as those which incorporate plates and shear walls. The results obtained are studied to ascertain the influence of composite action and other factors on the load carrying capacity of both bare frames and complete building structures. The theoretical failure load presented in this thesis does not predict the overall failure load of the structure nor does it predict the partial failure load of the shear walls and slabs but it merely predicts the partial failure load of a single frame and assumes that the loss of stiffess of such a frame renders the overall structure unusable. For most structures the analysis proposed in this thesis is likely to break down prematurely due to the failure of the slab and shear wall system and this factor must be taken into account in any future work on such structures. The experimental work reported in this thesis is acknowledged to be unsatisfactory as a verification of the limited theory proposed. In particular perspex was not found to be a suitable material for testing at high loads, micro-concrete may be more suitable.
Resumo:
A study of several chemical and electrochemical factors which affect the behaviour of embedded steel in cement pastes and concrete has been made. The effects of internal and external sources of chloride ions on the pore solution chemistry of Portland cement pastes, with and without additions of anodic corrosion inhibitors, have been studied using a pore solution expression device which has enabled samples of pore solution to be expressed from hardened cement pastes and analysed for various ionic species. Samples of pure alite and tricalcium aluminate have been prepared and characterised with respect to morphology, free lime content and fineness. Kinetics of diffusion of chloride ions in hardened pastes of alite and alite blended with tricalcium aluminate have been investigated and an activation energy obtained for the diffusion process in alite. The pore structures of the hardened pastes and the chloride ion binding capacity of alite have also been determined. Concrete cylinders containing embedded steel with four different surface conditions were exposed to various environments. The electrochemical behaviour of the steel was monitored during the period of exposure by means of rest potential measurements and the steel corrosion products analysed before and after being embedded. An examination was made of the nature of the interfacial zones produced between the embedded steel and cement. Rest potential measurements were monitored for steel embedded in alite paste in the presence of chloride ions and cement paste containing various levels of inhibitors in combination with chloride ions. In the latter case the results were supported by polarisation resistance determinations.
Resumo:
Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.