2 resultados para Transportation -- Planning
em Aston University Research Archive
Resumo:
This work is concerned with the development of techniques for the evaluation of large-scale highway schemes with particular reference to the assessment of their costs and benefits in the context of the current transport planning (T.P.P.) process. It has been carried out in close cooperation with West Midlands County Council, although its application and results are applicable elsewhere. The background to highway evaluation and its development in recent years has been described and the emergence of a number of deficiencies in current planning practise noted. One deficiency in particular stood out, that stemming from inadequate methods of scheme generation and the research has concentrated upon improving this stage of appraisal, to ensure that subsequent stages of design, assessment and implementation are based upon a consistent and responsive foundation. Deficiencies of scheme evaluation were found to stem from inadequate development of appraisal methodologies suffering from difficulties of valuation, measurement and aggregation of the disparate variables that characterise highway evaluation. A failure to respond to local policy priorities was also noted. A 'problem' rather than 'goals' based approach to scheme generation was taken, as it represented the current and foreseeable resource allocation context more realistically. A review of techniques with potential for highway problem based scheme generation, which would work within a series of practical and theoretical constraints were assessed and that of multivariate analysis, and classical factor analysis in particular, was selected, because it offerred considerable application to the difficulties of valuation, measurement and aggregation that existed. Computer programs were written to adapt classical factor analysis to the requirements of T.P.P. highway evaluation, using it to derive a limited number of factors which described the extensive quantity of highway problem data. From this, a series of composite problem scores for 1979 were derived for a case study area of south Birmingham, based upon the factorial solutions, and used to assess highway sites in terms of local policy issues. The methodology was assessed in the light of its ability to describe highway problems in both aggregate and disaggregate terms, to guide scheme design, coordinate with current scheme evaluation methods, and in general to improve upon current appraisal. Analysis of the results was both in subjective, 'common-sense' terms and using statistical methods to assess the changes in problem definition, distribution and priorities that emerged. Overall, the technique was found to improve upon current scheme generation methods in all respects and in particular in overcoming the problems of valuation, measurement and aggregation without recourse to unsubstantiated and questionable assumptions. A number of deficiencies which remained have been outlined and a series of research priorities described which need to be reviewed in the light of current and future evaluation needs.
Resumo:
Large-scale disasters are constantly occurring around the world, and in many cases evacuation of regions of city is needed. ‘Operational Research/Management Science’ (OR/MS) has been widely used in emergency planning for over five decades. Warning dissemination, evacuee transportation and shelter management are three ‘Evacuation Support Functions’ (ESF) generic to many hazards. This thesis has adopted a case study approach to illustrate the importance of integrated approach of evacuation planning and particularly the role of OR/MS models. In the warning dissemination phase, uncertainty in the household’s behaviour as ‘warning informants’ has been investigated along with uncertainties in the warning system. An agentbased model (ABM) was developed for ESF-1 with households as agents and ‘warning informants’ behaviour as the agent behaviour. The model was used to study warning dissemination effectiveness under various conditions of the official channel. In the transportation phase, uncertainties in the household’s behaviour such as departure time (a function of ESF-1), means of transport and destination have been. Households could evacuate as pedestrians, using car or evacuation buses. An ABM was developed to study the evacuation performance (measured in evacuation travel time). In this thesis, a holistic approach for planning the public evacuation shelters called ‘Shelter Information Management System’ (SIMS) has been developed. A generic allocation framework of was developed to available shelter capacity to the shelter demand by considering the evacuation travel time. This was formulated using integer programming. In the sheltering phase, the uncertainty in household shelter choices (either nearest/allocated/convenient) has been studied for its impact on allocation policies using sensitivity analyses. Using analyses from the models and detailed examination of household states from ‘warning to safety’, it was found that the three ESFs though sequential in time, however have lot of interdependencies from the perspective of evacuation planning. This thesis has illustrated an OR/MS based integrated approach including and beyond single ESF preparedness. The developed approach will help in understanding the inter-linkages of the three evacuation phases and preparing a multi-agency-based evacuation planning evacuation