4 resultados para Transforming Growth Factor beta

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Diabetic nephropathy is the leading cause of end-stage kidney failure worldwide. It is characterized by excessive extracellular matrix accumulation. Transforming growth factor beta 1 (TGF-ß1) is a fibrogenic cytokine playing a major role in the healing process and scarring by regulating extracellular matrix turnover, cell proliferation and epithelial mesanchymal transdifferentiation. Newly synthesized TGF-ß is released as a latent, biologically inactive complex. The cross-linking of the large latent TGF-ß to the extracellular matrix by transglutaminase 2 (TG2) is one of the key mechanisms of recruitment and activation of this cytokine. TG2 is an enzyme catalyzing an acyl transfer reaction leading to the formation of a stable e(?-glutamyl)-lysine cross-link between peptides.Methods. To investigate if changes in TG activity can modulate TGF-ß1 activation, we used the mink lung cell bioassay to assess TGF-ß activity in the streptozotocin model of diabetic nephropathy treated with TG inhibitor NTU281 and in TG2 overexpressing opossum kidney (OK) proximal tubular epithelial cells.Results. Application of the site-directed TG inhibitor NTU281 caused a 25% reduction in kidney levels of active TGF-ß1. Specific upregulation of TG2 in OK proximal tubular epithelial cells increased latent TGF-ß recruitment and activation by 20.7% and 19.7%, respectively, in co-cultures with latent TGF-ß binding protein producing fibroblasts.Conclusions. Regulation of TG2 directly influences the level of active TGF-ß1, and thus, TG inhibition may exert a renoprotective effect by targeting not only a direct extracellular matrix deposition but also TGF-ß1 activation and recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In fibrotic conditions increases in TG2 activity has been linked to an increase in the deposition of extracellular matrix proteins. Using TG2 transfected Swiss 3T3 fibroblasts expressing TG2 under the control of the tetracycline-regulated inducible promoter, we demonstrate that induction of TG2 not only stimulates an increase in collagen and fibronectin deposition but also an increase in the expression of these proteins. Increased TG2 expression in these fibroblasts led to NF-kappaB activation, resulting in the increased expression of transforming growth factor (TGF) beta(1). In addition, cells overexpressing TG2 demonstrated an increase in biologically active TGFbeta(1) in the extracellular environment. A specific site-directed inhibitor of TG abolished the NF-kappaB and TGFbeta1 activation and the subsequent elevation in the synthesis and deposition of extracellular matrix proteins, confirming that this process depends on the induction of transglutaminase activity. Treatment of TG2-induced fibroblasts with nontoxic doses of nitric oxide donor S-nitroso-N-acetylpenicillamine resulted in decreased TG2 activity and apprehension of the inactive enzyme on the cell surface. This was paralleled by a reduction in activation of NF-kappaB and TGFbeta(1) production with a subsequent decrease in collagen expression and deposition. These findings support a role for NO in the regulation of TG2 function in the extracellular environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of phosphoinositide 3-hydroxykinase (P13K) is currently believed to represent the critical regulatory event which leads to the production of a novel intracellular signal. We have examined the control of this pathway by a number of cell-surface receptors in NG115-401L-C3 neuronal cells. Insulin-like growth factor-I stimulated the accumulation of 3-phosphorylated inositol lipids in intact cells and the appearance of P13K in antiphosphotyrosine-antibody-directed immunoprecipitates prepared from lysed cells, suggesting that P13K had been activated by a mechanism involving a protein tyrosine kinase. In contrast, P13K in these cells was not regulated by a variety of G-protein-coupled receptors, nerve growth factor acting via a low affinity receptor, or receptors for transforming growth factor-beta and interleukin-1. The receptor-specificity of P13K activation in these cells places significant constraints on the possible physiological function(s) of this pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neuronal cell line (NG115-401L-C3) was stimulated by mitogenic (angiotensin) and non-mitogenic (bradykinin) peptides and examined for the time course of changes in the levels of radiolabelled inositol phosphates and phospholipids. Both peptides stimulated the time-dependent production of Ins(1,4,5)P3 and related metabolites. Bradykinin caused a much larger increase in Ins(1,4,5)P3 than did angiotensin. However, both peptides stimulated similar rises in the levels of Ins(1,3,4)P3 and InsP4. Bradykinin but not angiotensin, caused a rapid (within 2 s) fall in the levels of PtdIns(4,5)P2 and PtdIns(4)P. Serum pretreatment of the cells caused a 2-3-fold potentiation of both the responses to bradykinin and angiotensin. Although significant levels of PtdIns(3)P were detected in resting cells neither mitogenic (angiotensin, insulin-like growth factor I, transforming growth factor beta) nor non-mitogenic (bradykinin, nerve growth factor interleukin-1) receptor activation changed its levels, arguing against regulation of either PtdIns 3-kinase or PtdIns(3)P phosphatase. We conclude that, as judged by the levels of its product. PtdIns(3)P, the enzyme PtdIns 3-kinase is not activated. This questions the significance of this activity in the receptor-mediated initiation of DNA synthesis.