3 resultados para Transformers : Dark of the Moon
em Aston University Research Archive
Resumo:
In less than a decade, personal computers have become part of our daily lives. Many of us come into contact with computers every day, whether at work, school or home. As useful as the new technologies are, they also have a darker side. By making computers part of our daily lives, we run the risk of allowing thieves, swindlers, and all kinds of deviants directly into our homes. Armed with a personal computer, a modem and just a little knowledge, a thief can easily access confidential information, such as details of bank accounts and credit cards. This book helps people avoid harm at the hands of Internet criminals. It offers a tour of the more dangerous parts of the Internet, as the author explains who the predators are, their motivations, how they operate and how to protect against them. In less than a decade, personal computers have become part of our daily lives. Many of us come into contact with computers every day, whether at work, school or home. As useful as the new technologies are, they also have a darker side. By making computers part of our daily lives, we run the risk of allowing thieves, swindlers, and all kinds of deviants directly into our homes. Armed with a personal computer, a modem and just a little knowledge, a thief can easily access confidential information, such as details of bank accounts and credit cards. This book is intended to help people avoid harm at the hands of Internet criminals. It offers a tour of the more dangerous parts of the Internet, as the author explains who the predators are, their motivations, how they operate and how to protect against them. Behind the doors of our own homes, we assume we are safe from predators, con artists, and other criminals wishing us harm. But the proliferation of personal computers and the growth of the Internet have invited these unsavory types right into our family rooms. With a little psychological knowledge a con man can start to manipulate us in different ways. A terrorist can recruit new members and raise money over the Internet. Identity thieves can gather personal information and exploit it for criminal purposes. Spammers can wreak havoc on businesses and individuals. Here, an expert helps readers recognize the signs of a would-be criminal in their midst. Focusing on the perpetrators, the author provides information about how they operate, why they do it, what they hope to do, and how to protect yourself from becoming a victim.
Resumo:
Films of amorphous silicon (a-Si) were prepared by r.f. sputtering in a Ne plasma without the addition of hydrogen or a halogen. The d.c. dark electrical conductivity, he optical gap and the photoconductivity of the films were investigated for a range of preparation conditions, the sputtering gas pressure, P, the target-substrate spacing, d, the self-bias voltage, Vsb, on the target and the substrate temperature, Ts. The dependence of the electrical and optical properties on these conditions showed that various combinations of P, d and Vsb, at a constant Ts, giving the same product (Pd/V sb) result in films with similar properties, provided that P, d and Vsb remain vithin a certain range. Variation of Pd/Vsb between about 0.2 and 0.8 rrTorr.cm!V varied the dark conductivity over about 4 orders of magnitude, the optical gap by 0.5 eV and the photoconductivity over 4-5 orders of magnitude. This is attributed to controlling the density-of-states distribution in the mobility gap. The temperature-dependence of photoconductivity and the photoresponse of undoped films are in support of this conclusion. Films prepared at relatively high (Pd/Vsb) values and Ts=300 ºc: exhibited low dark-conductivity and high thermal activation energy, optical gap and photoresponse, characteristic properties of a 'low density-of-states material. P-type doping with group-Ill elements (Al, B and Ga) by sputtering from a composite target or from a predoped target (B-.doped) was investigated. The systematic variation of room-temperature conductivity over many orders of magnitude and a Fermi-level shift of about 0.7 eV towards the valence-band edge suggest that substitutional doping had taken place. The effects of preparation conditions on doping efficiency were also investigated. The post-deposition annealing of undoped and doped films were studied for a temperature range from 250 ºC to 470 ºC. It was shown that annealing enhanced the doping efficiency considerably, although it had little effect on the basic material (a-Si) prepared at the optimum conditions (Pd/Vsb=0.8 mTorr.cm/V and Ts=300 $ºC). Preliminary experiments on devices imply potential applications of the present material, such as p-n and MS junctions.
Resumo:
In conical refraction (CR), a focused Gaussian input beam passing through a biaxial crystal and parallel to one of the optic axes is transformed into a pair of concentric bright rings split by a dark (Poggendorff) ring at the focal plane. Here, we show the generation of a CR transverse pattern that does not present the Poggendorff fine splitting at the focal plane, i.e., it forms a single light ring. This light ring is generated from a nonhomogeneously polarized input light beam obtained by using a spatially inhomogeneous polarizer that mimics the characteristic CR polarization distribution. This polarizer allows modulating the relative intensity between the two CR light cones in accordance with the recently proposed dual-cone model of the CR phenomenon. We show that the absence of interfering rings at the focal plane is caused by the selection of one of the two CR cones. (C) 2015 Optical Society of America