2 resultados para Trajectory-based

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer simulated trajectories of bulk water molecules form complex spatiotemporal structures at the picosecond time scale. This intrinsic complexity, which underlies the formation of molecular structures at longer time scales, has been quantified using a measure of statistical complexity. The method estimates the information contained in the molecular trajectory by detecting and quantifying temporal patterns present in the simulated data (velocity time series). Two types of temporal patterns are found. The first, defined by the short-time correlations corresponding to the velocity autocorrelation decay times (â‰0.1â€ps), remains asymptotically stable for time intervals longer than several tens of nanoseconds. The second is caused by previously unknown longer-time correlations (found at longer than the nanoseconds time scales) leading to a value of statistical complexity that slowly increases with time. A direct measure based on the notion of statistical complexity that describes how the trajectory explores the phase space and independent from the particular molecular signal used as the observed time series is introduced. © 2008 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the rapid spread of smartphones has led to the increasing popularity of Location-Based Social Networks (LBSNs). Although a number of research studies and articles in the press have shown the dangers of exposing personal location data, the inherent nature of LBSNs encourages users to publish information about their current location (i.e., their check-ins). The same is true for the majority of the most popular social networking websites, which offer the possibility of associating the current location of users to their posts and photos. Moreover, some LBSNs, such as Foursquare, let users tag their friends in their check-ins, thus potentially releasing location information of individuals that have no control over the published data. This raises additional privacy concerns for the management of location information in LBSNs. In this paper we propose and evaluate a series of techniques for the identification of users from their check-in data. More specifically, we first present two strategies according to which users are characterized by the spatio-temporal trajectory emerging from their check-ins over time and the frequency of visit to specific locations, respectively. In addition to these approaches, we also propose a hybrid strategy that is able to exploit both types of information. It is worth noting that these techniques can be applied to a more general class of problems where locations and social links of individuals are available in a given dataset. We evaluate our techniques by means of three real-world LBSNs datasets, demonstrating that a very limited amount of data points is sufficient to identify a user with a high degree of accuracy. For instance, we show that in some datasets we are able to classify more than 80% of the users correctly.