3 resultados para Toxicological effects of Copperand Mercury

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the 1960s the benefits of government regulation of technology were believed to outweigh any costs. But recent studies have claimed that regulation has negative effects on innovation, health and consumer choice. This case study on food colours examines such claims. EFFECTS ON HEALTH were measured by allocating a hazard rating to each colour. The negative list of 1925 removed three harmful colours which were rapidly replaced, so the benefits were short-lived. Had a proposed ban been adopted in the 1860s it would have prevented many years exposure to hazardous mineral colours. The positive list of 1957 reduced the proportion of harmful coal tar dyes from 54% of the total to 20%. Regulations brought a greater reduction in hazard levels than voluntary trade action. Delays in the introduction of a positive list created a significant hazard burden. EFFECTS ON INNOVATION were assessed from patents and discovery dates. Until the 1950s food colours were adopted from textile colours. The major period of innovation for coal tar colours was between 1856 and 1910, finishing well before regulations were made in 1957, so regulations cannot be blamed for the decline. Regulations appear to have spurred the development of at least one new coal tar dye, and many new plant colours, creating a new sector of the dye industry. EFFECTS ON CONSUMER CHOICE were assessed by case studies. Coloured milk, for example, was banned despite its popularity. Regulations have restricted choice, but have removed from the market foods that were nutritionally impoverished and poor value for money. Compositional regulations provided health protection because they reduced total exposure to colours from certain staple foods. Restricting colours to a smaller range of foods would be an effective way of coping with problems of quality and imperfect toxicological knowledge today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixtures of pesticides in foodstuffs and the environment are ubiquitous in the developed world and although agents are usually exhaustively tested individually, the toxicological implications of pesticide mixtures are underreported. In this study, the effects of two fungicides, fenhexamid and myclobutanil were investigated individually and in combination on two human cell lines, SH-SY5Y neuronal cells and U-251 MG glial cells. After 48. h of incubation with increasing concentrations of pesticides ranging from 1 to 1000. μM, gene expression profiles were studied in addition to toxicity end points, including cell viability, mitochondrial depolarisation as well as cellular glutathione maintenance. There were no significant differences between the susceptibility of the two cell lines in terms of cell viability assessment or mitochondrial membrane potential, when agents were administered either individually or in combination. By contrast, in the presence of the fungicides, the SH-SY5Y cells showed significantly greater susceptibility to oxidative stress in terms of total thiol depletion in comparison with the astrocytic cells. Treatment with the two pesticides led to significant changes in the cell lines' expression of several genes which regulate cell cycle control and growth (RB1, TIMP1) as well as responses to DNA attrition (ATM and CDA25A) and control of apoptosis (FAS). There was no evidence in this study that the combination of fenhexamid and myclobutanil was significantly more toxic than individual exposure, although gene expression changes suggested there may be differences in the sub-lethal response of both cell lines to both individual and combined exposure.