24 resultados para Towards Seamless Integration of Geoscience Models and Data
em Aston University Research Archive
Resumo:
Increasingly software systems are required to survive variations in their execution environment without or with only little human intervention. Such systems are called "eternal software systems". In contrast to the traditional view of development and execution as separate cycles, these modern software systems should not present such a separation. Research in MDE has been primarily concerned with the use of models during the first cycle or development (i.e. during the design, implementation, and deployment) and has shown excellent results. In this paper the author argues that an eternal software system must have a first-class representation of itself available to enable change. These runtime representations (or runtime models) will depend on the kind of dynamic changes that we want to make available during execution or on the kind of analysis we want the system to support. Hence, different models can be conceived. Self-representation inevitably implies the use of reflection. In this paper the author briefly summarizes research that supports the use of runtime models, and points out different issues and research questions. © 2009 IEEE.
Resumo:
Congenital nystagmus (CN) is an ocular-motor disorder characterised by involuntary, conjugated ocular oscillations, that can arise since the first months of life. Pathogenesis of congenital nystagmus is still under investigation. In general, CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, image stabilisation is still achieved during the short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recording are routinely employed, allowing physicians to extract and analyse nystagmus main features such as shape, amplitude and frequency. Using eye movement recording, it is also possible to compute estimated visual acuity predictors: analytical functions which estimates expected visual acuity using signal features such as foveation time and foveation position variability. Use of those functions add information to typical visual acuity measurement (e.g. Landolt C test) and could be a support for therapy planning or monitoring. This study focus on robust detection of CN patients' foveations. Specifically, it proposes a method to recognize the exact signal tracts in which a subject foveates, This paper also analyses foveation sequences. About 50 eyemovement recordings, either infrared-oculographic or electrooculographic, from different CN subjects were acquired. Results suggest that an exponential interpolation for the slow phases of nystagmus could improve foveation time computing and reduce influence of breaking saccades and data noise. Moreover a concise description of foveation sequence variability can be achieved using non-fitting splines. © 2009 Springer Berlin Heidelberg.
Resumo:
Formulating manufacturing business strategy is often fragmented in as much as current tools address upstream and downstream vertical integration with product integration, or more recently, product and infrastructure integration. Rarely do tools address all of these dimensions in an holistic manner. The research described in this paper is that undertaken in the MAPSTRAT project: a scoping study with industrial partners, aiming to satisfy this business need. A comprehensive literature study is described which is contextualized using six case studies. The paper stresses the importance of ‘joined-up thinking’ and outlines plans for an appropriate tool that is under development.
Resumo:
The breadth and depth of available clinico-genomic information, present an enormous opportunity for improving our ability to study disease mechanisms and meet the individualised medicine needs. A difficulty occurs when the results are to be transferred 'from bench to bedside'. Diversity of methods is one of the causes, but the most critical one relates to our inability to share and jointly exploit data and tools. This paper presents a perspective on current state-of-the-art in the analysis of clinico-genomic data and its relevance to medical decision support. It is an attempt to investigate the issues related to data and knowledge integration. Copyright © 2010 Inderscience Enterprises Ltd.
Resumo:
We present in this paper ideas to tackle the problem of analysing and forecasting nonstationary time series within the financial domain. Accepting the stochastic nature of the underlying data generator we assume that the evolution of the generator's parameters is restricted on a deterministic manifold. Therefore we propose methods for determining the characteristics of the time-localised distribution. Starting with the assumption of a static normal distribution we refine this hypothesis according to the empirical results obtained with the methods anc conclude with the indication of a dynamic non-Gaussian behaviour with varying dependency for the time series under consideration.
Resumo:
An interactive hierarchical Generative Topographic Mapping (HGTM) ¸iteHGTM has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: bf (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in ¸iteKabanpami. bf (2) We give the user a choice of initializing the child plots of the current plot in either em interactive, or em automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in ¸iteHGTM, whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTMs is employed. bf (3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.
Resumo:
Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.
Resumo:
Foley [J. Opt. Soc. Am. A 11 (1994) 1710] has proposed an influential psychophysical model of masking in which mask components in a contrast gain pool are raised to an exponent before summation and divisive inhibition. We tested this summation rule in experiments in which contrast detection thresholds were measured for a vertical 1 c/deg (or 2 c/deg) sine-wave component in the presence of a 3 c/deg (or 6 c/deg) mask that had either a single component oriented at -45° or a pair of components oriented at ±45°. Contrary to the predictions of Foley's model 3, we found that for masks of moderate contrast and above, threshold elevation was predicted by linear summation of the mask components in the inhibitory stage of the contrast gain pool. We built this feature into two new models, referred to as the early adaptation model and the hybrid model. In the early adaptation model, contrast adaptation controls a threshold-like nonlinearity on the output of otherwise linear pathways that provide the excitatory and inhibitory inputs to a gain control stage. The hybrid model involves nonlinear and nonadaptable routes to excitatory and inhibitory stages as well as an adaptable linear route. With only six free parameters, both models provide excellent fits to the masking and adaptation data of Foley and Chen [Vision Res. 37 (1997) 2779] but unlike Foley and Chen's model, are able to do so with only one adaptation parameter. However, only the hybrid model is able to capture the features of Foley's (1994) pedestal plus orthogonal fixed mask data. We conclude that (1) linear summation of inhibitory components is a feature of contrast masking, and (2) that the main aftereffect of spatial adaptation on contrast increment thresholds can be assigned to a single site. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Keyword identification in one of two simultaneous sentences is improved when the sentences differ in F0, particularly when they are almost continuously voiced. Sentences of this kind were recorded, monotonised using PSOLA, and re-synthesised to give a range of harmonic ?F0s (0, 1, 3, and 10 semitones). They were additionally re-synthesised by LPC with the LPC residual frequency shifted by 25% of F0, to give excitation with inharmonic but regularly spaced components. Perceptual identification of frequency-shifted sentences showed a similar large improvement with nominal ?F0 as seen for harmonic sentences, although overall performance was about 10% poorer. We compared performance with that of two autocorrelation-based computational models comprising four stages: (i) peripheral frequency selectivity and half-wave rectification; (ii) within-channel periodicity extraction; (iii) identification of the two major peaks in the summary autocorrelation function (SACF); (iv) a template-based approach to speech recognition using dynamic time warping. One model sampled the correlogram at the target-F0 period and performed spectral matching; the other deselected channels dominated by the interferer and performed matching on the short-lag portion of the residual SACF. Both models reproduced the monotonic increase observed in human performance with increasing ?F0 for the harmonic stimuli, but not for the frequency-shifted stimuli. A revised version of the spectral-matching model, which groups patterns of periodicity that lie on a curve in the frequency-delay plane, showed a closer match to the perceptual data for frequency-shifted sentences. The results extend the range of phenomena originally attributed to harmonic processing to grouping by common spectral pattern.
Resumo:
The PC12 and SH-SY5Y cell models have been proposed as potentially realistic models to investigate neuronal cell toxicity. The effects of oxidative stress (OS) caused by both H2O2 and Aβ on both cell models were assessed by several methods. Cell toxicity was quantitated by measuring cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) viability assay, an indicator of the integrity of the electron transfer chain (ETC), and cell morphology by fluorescence and video microscopy, both of which showed OS to cause decreased viability and changes in morphology. Levels of intracellular peroxide production, and changes in glutathione and carbonyl levels were also assessed, which showed OS to cause increases in intracellular peroxide production, glutathione and carbonyl levels. Differentiated SH-SY5y cells were also employed and observed to exhibit the greatest sensitivity to toxicity. The neurotrophic factor, nerve growth factor (NGF) was shown to cause protection against OS. Cells pre-treated with NGF showed higher viability after OS, generally less apoptotic morphology, recorded less apoptotic nucleiods, generally lower levels of intracellular peroxides and changes in gene expression. The neutrophic factor, brain derived growth factor (BDNF) and ascorbic acid (AA) were also investigated. BDNF showed no specific neuroprotection, however the preliminary data does warrant further investigation. AA showed a 'janus face' showing either anti-oxidant action and neuroprotection or pro-oxidant action depending on the situation. Results showed that the toxic effects of compounds such as Aβ and H2O2 are cell type dependent, and that OS alters glutathione metabolism in neuronal cells. Following toxic insult, glutathione levels are depleted to low levels. It is herein suggested that this lowering triggers an adaptive response causing alterations in glutathione metabolism as assessed by evaluation of glutathione mRNA biosynthetic enzyme expression and the subsequent increase in glutathione peroxidase (GPX) levels.
Resumo:
The number of remote sensing platforms and sensors rises almost every year, yet much work on the interpretation of land cover is still carried out using either single images or images from the same source taken at different dates. Two questions could be asked of this proliferation of images: can the information contained in different scenes be used to improve the classification accuracy and, what is the best way to combine the different imagery? Two of these multiple image sources are MODIS on the Terra platform and ETM+ on board Landsat7, which are suitably complementary. Daily MODIS images with 36 spectral bands in 250-1000 m spatial resolution and seven spectral bands of ETM+ with 30m and 16 days spatial and temporal resolution respectively are available. In the UK, cloud cover may mean that only a few ETM+ scenes may be available for any particular year and these may not be at the time of year of most interest. The MODIS data may provide information on land cover over the growing season, such as harvest dates, that is not present in the ETM+ data. Therefore, the primary objective of this work is to develop a methodology for the integration of medium spatial resolution Landsat ETM+ image, with multi-temporal, multi-spectral, low-resolution MODIS \Terra images, with the aim of improving the classification of agricultural land. Additionally other data may also be incorporated such as field boundaries from existing maps. When classifying agricultural land cover of the type seen in the UK, where crops are largely sown in homogenous fields with clear and often mapped boundaries, the classification is greatly improved using the mapped polygons and utilising the classification of the polygon as a whole as an apriori probability in classifying each individual pixel using a Bayesian approach. When dealing with multiple images from different platforms and dates it is highly unlikely that the pixels will be exactly co-registered and these pixels will contain a mixture of different real world land covers. Similarly the different atmospheric conditions prevailing during the different days will mean that the same emission from the ground will give rise to different sensor reception. Therefore, a method is presented with a model of the instantaneous field of view and atmospheric effects to enable different remote sensed data sources to be integrated.
Resumo:
Enzyme technology is widely regarded as an exciting new technology possessing great opportunities for commercial interests and is one of a small group of key technologies singled out by the Science Research Councils during the 1960's as worthy of special support. In this thesis I outline the basic characteristics of this technology analysing the nature of the Government's policy towards it. The approach I have chosen requires an in depth analysis of the innovation process for enzymes which forms the basis for a model. This model is then used to focus on aspects of the UK science policy towards innovation in enzyme technology, assessing its impacts, and appraising the usefulness of this approach for future policy initiatives.
Resumo:
Damage to insulation materials located near to a primary circuit coolant leak may compromise the operation of the emergency core cooling system (ECCS). Insulation material in the form of mineral wool fiber agglomerates (MWFA) maybe transported to the containment sump strainers, where they may block or penetrate the strainers. Though the impact of MWFA on the pressure drop across the strainers is minimal, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effect that corrosion and erosion of the containment internals by the coolant has on the strainer pressure drop. The focus of this paper is on the verification and validation of numerical models that can predict the transport of MWFA. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Note that the relative viscosity is only significant at high concentrations. Three single effect experiments were used to provide validation data on the transport of the fiber agglomerates under conditions of sedimentation in quiescent fluid, sedimentation in a horizontal flow and suspension in a horizontal flow. The experiments were performed in a rectangular column for the quiescent fluid and a racetrack type channel that provided a near uniform horizontal flow. The numerical models of sedimentation in the column and the racetrack channel found that the sedimentation characteristics are consistent with the experiments. For channel suspension, the heavier fibers tend to accumulate at the channel base even at high velocities, while lighter phases are more likely to be transported around the channel.