4 resultados para Topologically Massive Yang-Mills

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

De-inking sludge is a waste product generated from secondary fibre paper mills who manufacture recycled paper into new paper sheets; it refers directly to the solid residues which evolve during the de-inking stage of the paper pulping process. The current practice for the disposal of this waste is either by land-spreading, land-filling or incineration which are unsustainable. This work has explored the intermediate pyrolysis of pre-conditioned de-inking sludge pellets in a recently patented 20 kg/h intermediate pyrolysis reactor (The Pyroformer). The reactor is essentially two co-axial screws which are configured in such a way as to circulate solids within the reactor and thus facilitate in the cracking of tars. The potential application of using the volatile organic vapours and permanent gases evolved would be to generate both combined heat and power (CHP) located at paper making sites. The results show that de-inking sludge could be successfully pyrolysed and the organic vapours produced were composed of a mixture of aromatic hydrocarbons, phenolic compounds and some fatty acid methyl esters as detected by liquid GC-MS. The calorific value of the oil after condensing was between 36 and 37 MJ/kg and the liquid fuel properties were also determined, permanent gases were detected by a GC-TCD and were composed of approximately 24% CO, 6% CH and 70% CO (v/v%). The solid residue from pyrolysis also contained a small residual calorific value, and was largely composed of mainly calcium based inert metal oxides. The application of applying intermediate pyrolysis to de-inking sludge for both CHP production and waste reduction is in principle a feasible technology which could be applied at secondary fibre paper mills. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Case law report - online

Relevância:

20.00% 20.00%

Publicador:

Resumo:

De-inking sludge is a waste product generated from secondary fibre paper mills who manufacture recycled paper into new paper sheets; it refers directly to the solid residues which evolve during the de-inking stage of the paper pulping process. The current practice for the disposal of this waste is either by land-spreading, land-filling or incineration which are unsustainable. This work has explored the intermediate pyrolysis of pre-conditioned de-inking sludge pellets in a recently patented 20 kg/h intermediate pyrolysis reactor (The Pyroformer). The reactor is essentially two co-axial screws which are configured in such a way as to circulate solids within the reactor and thus facilitate in the cracking of tars. The potential application of using the volatile organic vapours and permanent gases evolved would be to generate both combined heat and power (CHP) located at paper making sites. The results show that de-inking sludge could be successfully pyrolysed and the organic vapours produced were composed of a mixture of aromatic hydrocarbons, phenolic compounds and some fatty acid methyl esters as detected by liquid GC-MS. The calorific value of the oil after condensing was between 36 and 37 MJ/kg and the liquid fuel properties were also determined, permanent gases were detected by a GC-TCD and were composed of approximately 24% CO, 6% CH and 70% CO (v/v%). The solid residue from pyrolysis also contained a small residual calorific value, and was largely composed of mainly calcium based inert metal oxides. The application of applying intermediate pyrolysis to de-inking sludge for both CHP production and waste reduction is in principle a feasible technology which could be applied at secondary fibre paper mills. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the effectiveness of digital diabetic retinopathy screening in patients aged 90 years and over.MethodsThis is a retrospective analysis of 200 randomly selected patients eligible for diabetic retinopathy screening aged 90 years and over within the Birmingham, Solihull, and Black Country Screening Programme.ResultsOne hundred and seventy-nine (90%) patients attended screening at least once. 133 (74%) annual screening after their first screen, of whom 59% had no detectable diabetic retinopathy; 38 (21%) were referred for ophthalmology clinical assessment-36 for nondiabetic retinopathy reasons and two for diabetic maculopathy. Cataract accounted for 50% of all referrals for ophthalmology clinical assessment. Of the 133 patients placed on annual screening, 93 (70%) were screened at least once more. In terms of level of diabetic retinopathy, assessability or other ocular pathologies, 8 improved, 51 remained stable, and 31 deteriorated. Of the latter, 19 patients were referred for ophthalmology clinical assessment; none of these for diabetic retinopathy.ConclusionsScreening provides opportunistic identification of important nondiabetic retinopathy eye conditions. However, in view of the low identification rate of sight-threatening diabetic retinopathy in patients aged 90 years and over, and the current mission statement of the NHS Diabetic Eye Screening Programme, systematic annual diabetic retinopathy screening may not be justified in this age group of patients, but rather be performed in optometric practice.