3 resultados para Topography Effect

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal neuronal intermediate filament (IF) inclusions immunopositive for the type IV IF α-internexin have been identified as the pathological hallmark of neuronal intermediate filament inclusion disease (NIFID). We studied the topography of these inclusions in the frontal and temporal lobe in 68 areas from 10 cases of NIFID. In the cerebral cortex, CA sectors of the hippocampus, and dentate gyrus granule cell layer, the inclusions were distributed mainly in regularly distributed clusters, 50-800 μm in diameter. In seven cortical areas, there was a more complex pattern in which the clusters of inclusions were aggregated into larger superclusters. In 11 cortical areas, the size of the clusters approximated to those of the cells of origin of the cortico-cortical pathways but in the majority of the remaining areas, cluster size was smaller than 400 μm. The topography of the lesions suggests that there is degeneration of the cortico-cortical projections in NIFID with the formation of α-internexin-positive aggregates within vertical columns of cells. Initially, only a subset of cells within a vertical column develops inclusions but as the disease progresses, the whole of the column becomes affected. The corticostriate projection appears to have little effect on the cortical topography of the inclusions. © 2006 EFNS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. The purpose of this study was to investigate the influence of corneal topography and thickness on intraocular pressure (IOP) and pulse amplitude (PA) as measured using the Ocular Blood Flow Analyzer (OBFA) pneumatonometer (Paradigm Medical Industries, Utah, USA). Methods. 47 university students volunteered for this cross-sectional study: mean age 20.4 yrs, range 18 to 28 yrs; 23 male, 24 female. Only the measurements from the right eye of each participant were used. Central corneal thickness and mean corneal radius were measured using Scheimpflug biometry and corneal topographic imaging respectively. IOP and PA measurements were made with the OBFA pneumatonometer. Axial length was measured using A-scan ultrasound, due to its known correlation with these corneal parameters. Stepwise multiple regression analysis was used to identify those components that contributed significant variance to the independent variables of IOP and PA. Results. The mean IOP and PA measurements were 13.1 (SD 3.3) mmHg and 3.0 (SD 1.2) mmHg respectively. IOP measurements made with the OBFA pneumatonometer correlated significantly with central corneal thickness (r = +0.374, p = 0.010), such that a 10 mm change in CCT was equivalent to a 0.30 mmHg change in measured IOP. PA measurements correlated significantly with axial length (part correlate = -0.651, p < 0.001) and mean corneal radius (part correlate = +0.459, p < 0.001) but not corneal thickness. Conclusions. IOP measurements taken with the OBFA pneumatonometer are correlated with corneal thickness, but not axial length or corneal curvature. Conversely, PA measurements are unaffected by corneal thickness, but correlated with axial length and corneal radius. These parameters should be taken into consideration when interpreting IOP and PA measurements made with the OBFA pneumatonometer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was concerned with the effects of pulsed current on the electrodeposition of chromium and copper. In the case of the latter metal, a novel application has been studied and a theory proposed for the ability to improve throwing power by the joint use of organic additives and pulsed reverse current. During the course of the research, several improvements were made to the pulse plating unit.Chromium. A study was made of the effect of square wave pulsed current on various physical properties of deposits from three hard chromium plating electrolytes. The effect of varying frequency at a duty cycle of 50% on the mean bulk internal stress, visual appearance, hardness, crack characteristics and surface topography of the electrodeposits was determined. X-ray diffraction techniques were used to study the phases present in the deposits. The effect of varying frequency on the cathodic efficiencies of the electrolytes was also determined. It was found that pulsed current reduced the internal stress of deposits from the sulphate catalysed electrolyte. It also reduced or eliminated cracking of deposits and reduced deposit brightness. Under certain conditions, pulsed current was found to induce the co-deposition of hydrides of chromium. Deposit hardness was found to be reduced by the use of pulsed current. Cathodic efficiencies of the high efficiency electrolytes were reduced by use of pulsed current although this effect was minimised at high frequencies. The sulphate catalysed electrolyte showed an increase in efficiency over the frequency range where hydrides were co-deposited.Copper. The polarisation behaviour of acid copper solutions containing polyethers, sulphopropyl sulphides and chloride ions was studied using both direct and pulse reverse current. The effect of these additives on the rest potentials of copper deposits immersed in the electrolyte was also studied. Hole Throwing Power on printed circuit boards was determined using a specially designed test cell. The effect of pulsed reverse current on the hole throwing power of commercially produced printed circuit boards was also studied. Polyethers were found to have an inhibiting effect on the deposition of copper whereas the sulphopropyl sulphides produced a stimulating (i.e. depolarising) effect. Studies of rest potentials made when both additives were present indicated that the sulphopropyl sulphide was preferentially adsorbed. The use of pulsed reverse current in solutions containing both polyether and sulphopropyl sulphide was found to cause desorption of the sulphopropyl sulphide at the cathode surface. Thus, at higher current densities, the inhibiting effect of the polyether produced an increase in the cathodic polarisation potential. At lower current densities, the depolarisation effect of the sulphopropyl sulphide could still occur. On printed circuit boards, this effect was found to produce an increase in the `hole throwing power' due to depolarisation of the holes relative to the surface of the boards. Typically, using direct current, hole/surface thickness ratios of 40% were obtained when plating 0.6 mm holes in a 3.2 mm thick board at a current density of 3 A/dm2 whereas using pulsed reverse current, ratios of 80% could be obtained at an equivalent rate of deposition. This was observed both in laboratory tests and on commercially plated boards.