3 resultados para Tissue implantation

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synthetic calcium phosphates, despite their bioactivity, are brittle. Calcium phosphate-mullite composites have been suggested as potential dental and bone replacement materials which exhibit increased toughness. Aluminium, present in mullite, has however been linked to bone demineralisation and neurotoxicity: it is therefore important to characterise the materials fully in order to understand their in vivo behaviour. The present work reports the compositional mapping of the interfacial region of a calcium phosphate-20 wt% mullite biocomposite/soft tissue interface, obtained from the samples implanted into the long bones of healthy rabbits according to standard protocols (ISO-10993) for up to 12 weeks. X-ray micro-fluorescence was used to map simultaneously the distribution of Al, P, Si and Ca across the ceramic-soft tissue interface. A well defined and sharp interface region was present between the ceramic and the surrounding soft tissue for each time period examined. The concentration of Al in the surrounding tissue was found to fall by two orders of magnitude, to the background level, within similar to 35 mu m of the implanted ceramic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. The precise mechanisms underlying the development of chronic allograft nephropathy (CAN) and the associated renal fibrosis remain uncertain. The protein-crosslinking enzyme, tissue transglutaminase (tTg), has recently been implicated in renal fibrosis. Methods. We investigated the involvement of tTg and its crosslink product, [epsilon]-([gamma]-glutamyl) lysine, in 23 human kidney allografts during the early posttransplantation period and related these to changes of CAN that developed in 8 of them. Sequential biopsies were investigated using immunohistochemical, immunofluorescence, and in situ enzyme activity techniques. Results. From implantation, tTg (+266%) and [epsilon]-([gamma]-glutamyl) lysine crosslink (+256.3%) staining increased significantly (P <0.001) in a first renal biopsy performed within 3 months from transplantation. This was paralleled by elevated tTg in situ activity. The eight patients who developed CAN had further increases in immunostainable tTg (+197.2%, P <0.001) and [epsilon]-([gamma]-glutamyl) lysine bonds (+465%, P <0.01) that correlated with interstitial fibrosis (r=0.843, P =0.009 and r=0.622, P =0.05, respectively). The staining for both was predominantly located within the mesangium and the renal interstitium. Both implantation and first biopsies showed tTg and [epsilon]-([gamma]-glutamyl) lysine crosslinking levels in patients who developed CAN to be twice the levels of those with stable renal function. Cox regression analysis suggested the intensity of the early tTg staining was a better predictor of inferior allograft survival that other histologic markers (hazard ratio=4.48, P =0.04). Conclusions. tTg and [epsilon]-([gamma]-glutamyl) lysine crosslink correlated with the initiation and progression of scarring on sequential biopsies from renal-allograft recipients who experienced CAN. Elevated tTg may offer an early predictor of the development of CAN, whereas tTg manipulation may be an attractive therapeutic target

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a surgical robotic device for cochlear implantation surgery is described that is able to discriminate tissue interfaces and other controlling parameters ahead of a drill tip. The advantage in surgery is that tissues at interfaces can be preserved. The smart tool is able to control interaction with respect to the flexing tissue to avoid penetration control the extent of protrusion with respect to the real-time position of the tissue. To interpret drilling conditions, and conditions leading up to breakthrough at a tissue interface, the sensing scheme used enables discrimination between the variety of conditions posed in the drilling environment. The result is a robust fully autonomous system able to respond to tissue type, behaviour and deflection in real-time. The paper describes the robotic tool that has been designed to be used in the surgical environment where it has been used in the operating room.