29 resultados para Time varying networks
em Aston University Research Archive
Resumo:
This paper reviews some basic issues and methods involved in using neural networks to respond in a desired fashion to a temporally-varying environment. Some popular network models and training methods are introduced. A speech recognition example is then used to illustrate the central difficulty of temporal data processing: learning to notice and remember relevant contextual information. Feedforward network methods are applicable to cases where this problem is not severe. The application of these methods are explained and applications are discussed in the areas of pure mathematics, chemical and physical systems, and economic systems. A more powerful but less practical algorithm for temporal problems, the moving targets algorithm, is sketched and discussed. For completeness, a few remarks are made on reinforcement learning.
Resumo:
The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs.
Resumo:
Pulses in the form of the Airy function as solutions to an equation similar to the Schrodinger equation but with opposite roles of the time and space variables are derived. The pulses are generated by an Airy time varying field at a source point and propagate in vacuum preserving their shape and magnitude. The pulse motion is decelerating according to a quadratic law. Its velocity changes from infinity at the source point to zero in infinity. These one dimensional results are extended to the 3D+time case for a similar Airy-Bessel pulse with the same behaviour, the non-diffractive preservation and the deceleration. This pulse is excited by the field at a plane aperture perpendicular to the direction of the pulse propagation. © 2011 IEEE.
Resumo:
Simple models of time-varying risk premia are used to measure the risk premia in long-term UK government bonds. The parameters of the models can be estimated using nonlinear seemingly unrelated regression (NL-SUR), which permits efficient use of information across the entire yield curve and facilitates the testing of various cross-sectional restrictions. The estimated time-varying premia are found to be substantially different to those estimated using models that assume constant risk premia. © 2004 Taylor and Francis Ltd.
Resumo:
Are persistent marketing effects most likely to appear right after the introduction of a product? The authors give an affirmative answer to this question by developing a model that explicitly reports how persistent and transient marketing effects evolve over time. The proposed model provides managers with a valuable tool to evaluate their allocation of marketing expenditures over time. An application of the model to many pharmaceutical products, estimated through (exact initial) Kalman filtering, indicates that both persistent and transient effects occur predominantly immediately after a brand's introduction. Subsequently, the size of the effects declines. The authors theoretically and empirically compare their methodology with methodology based on unit root testing and demonstrate that the need for unit root tests creates difficulties in applying conventional persistence modeling. The authors recommend that marketing models should either accommodate persistent effects that change over time or be applied to mature brands or limited time windows only.
Resumo:
This paper aims to help supply chain managers to determine the value of retailer-supplier partnership initiatives beyond information sharing (IS) according to their specific business environment under time-varying demand conditions. For this purpose, we use integer linear programming models to quantify the benefits that can be accrued by a retailer, a supplier and system as a whole from shift in inventory ownership and shift in decision-making power with that of IS. The results of a detailed numerical study pertaining to static time horizon reveal that the shift in inventory ownership provides system-wide cost benefits in specific settings. Particularly, when it induces the retailer to order larger quantities and the supplier also prefers such orders due to significantly high setup and shipment costs. We observe that the relative benefits of shift in decision-making power are always higher than the shift in inventory ownership under all the conditions. The value of the shift in decision-making power is greater than IS particularly when the variability of underlying demand is low and time-dependent variation in production cost is high. However, when the shipment cost is negligible and order issuing efficiency of the supplier is low, the cost benefits of shift in decision-making power beyond IS are not significant. © 2012 Taylor & Francis.
Resumo:
We examine how the most prevalent stochastic properties of key financial time series have been affected during the recent financial crises. In particular we focus on changes associated with the remarkable economic events of the last two decades in the volatility dynamics, including the underlying volatility persistence and volatility spillover structure. Using daily data from several key stock market indices, the results of our bivariate GARCH models show the existence of time varying correlations as well as time varying shock and volatility spillovers between the returns of FTSE and DAX, and those of NIKKEI and Hang Seng, which became more prominent during the recent financial crisis. Our theoretical considerations on the time varying model which provides the platform upon which we integrate our multifaceted empirical approaches are also of independent interest. In particular, we provide the general solution for time varying asymmetric GARCH specifications, which is a long standing research topic. This enables us to characterize these models by deriving, first, their multistep ahead predictors, second, the first two time varying unconditional moments, and third, their covariance structure.
Resumo:
Pulses with an envelope in the form of the Airy function are obtained using Green's functions in 1D and 2D in time domain. Interaction of such pulses with a dielectric layer is investigated and expressions for reflected and transmitted pulses are obtained. © 2012 EUROPEAN MICROWAVE ASSOC.
Resumo:
Limited energy is a big challenge for large scale wireless sensor networks (WSN). Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, the impacts of using modulation scaling on packet delivery latency and loss are not considered, which may have adverse effects on the application qualities. In this paper, we study this problem and propose control schemes to minimize energy consumption while ensuring application qualities. We first analyze the relationships of modulation scaling and energy consumption, end-to-end delivery latency and packet loss ratio. With the analytical model, we develop a centralized control scheme to adaptively adjust the modulation levels, in order to minimize energy consumption and ensure the application qualities. To improve the scalability of the centralized control scheme, we also propose a distributed control scheme. In this scheme, the sink will send the differences between the required and measured application qualities to the sensors. The sensors will update their modulation levels with the local information and feedback from the sink. Experimental results show the effectiveness of energy saving and QoS guarantee of the control schemes. The control schemes can adapt efficiently to the time-varying requirements on application qualities. Copyright © 2005 The Institute of Electronics, Information and Communication Engineers.
Resumo:
Cascaded multilevel inverters-based Static Var Generators (SVGs) are FACTS equipment introduced for active and reactive power flow control. They eliminate the need for zigzag transformers and give a fast response. However, with regard to their application for flicker reduction in using Electric Arc Furnace (EAF), the existing multilevel inverter-based SVGs suffer from the following disadvantages. (1) To control the reactive power, an off-line calculation of Modulation Index (MI) is required to adjust the SVG output voltage. This slows down the transient response to the changes of reactive power; and (2) Random active power exchange may cause unbalance to the voltage of the d.c. link (HBI) capacitor when the reactive power control is done by adjusting the power angle d alone. To resolve these problems, a mathematical model of 11-level cascaded SVG, was developed. A new control strategy involving both MI (modulation index) and power angle (d) is proposed. A selected harmonics elimination method (SHEM) is taken for switching pattern calculations. To shorten the response time and simplify the controls system, feed forward neural networks are used for on-line computation of the switching patterns instead of using look-up tables. The proposed controller updates the MI and switching patterns once each line-cycle according to the sampled reactive power Qs. Meanwhile, the remainder reactive power (compensated by the MI) and the reactive power variations during the line-cycle will be continuously compensated by adjusting the power angles, d. The scheme senses both variables MI and d, and takes action through the inverter switching angle, qi. As a result, the proposed SVG is expected to give a faster and more accurate response than present designs allow. In support of the proposal there is a mathematical model for reactive powered distribution and a sensitivity matrix for voltage regulation assessment, MATLAB simulation results are provided to validate the proposed schemes. The performance with non-linear time varying loads is analysed and refers to a general review of flicker, of methods for measuring flickers due to arc furnace and means for mitigation.
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
It is shown that an electromagnetic wave equation in time domain is reduced in paraxial approximation to an equation similar to the Schrodinger equation but in which the time and space variables play opposite roles. This equation has solutions in form of time-varying pulses with the Airy function as an envelope. The pulses are generated by a source point with an Airy time varying field and propagate in vacuum preserving their shape and magnitude. The motion is according to a quadratic law with the velocity changing from infinity at the source point to zero in infinity. These one-dimensional results are extended to the 3D+time case when a similar Airy-Bessel pulse is excited by the field at a plane aperture. The same behaviour of the pulses, the non-diffractive preservation and their deceleration, is found. © 2011 IEEE.
Resumo:
This article examines whether UK portfolio returns are time varying so that expected returns follow an AR(1) process as proposed by Conrad and Kaul for the USA. It explores this hypothesis for four portfolios that have been formed on the basis of market capitalization. The portfolio returns are modelled using a kalman filter signal extraction model in which the unobservable expected return is the state variable and is allowed to evolve as a stationary first order autoregressive process. It finds that this model is a good representation of returns and can account for most of the autocorrelation present in observed portfolio returns. This study concludes that UK portfolio returns are time varying and the nature of the time variation appears to introduce a substantial amount of autocorrelation to portfolio returns. Like Conrad and Kaul if finds a link between the extent to which portfolio returns are time varying and the size of firms within a portfolio but not the monotonic one found for the USA.