19 resultados para Time transfer
em Aston University Research Archive
Resumo:
Ascorbate can act as both a reducing and oxidising agent in vitro depending on its environment. It can modulate the intracellular redox environment of cells and therefore is predicted to modulate thiol-dependent cell signalling and gene expression pathways. Using proteomic analysis of vitamin C-treated T cells in vitro, we have previously reported changes in expression of five functional protein groups associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of the signalling molecule phosphatidylinositol transfer protein (PITP) was also confirmed using Western blotting. Herein, we have compared protein changes elicited by ascorbate in vitro, with the effect of ascorbate on plasma potassium levels, on peripheral blood mononuclear cell (PBMC) apoptosis and PITP expression, in patients supplemented with vitamin C (0-2 g/d) for up to 10 weeks to investigate whether in vitro model systems are predictive of in vivo effects. PITP varied in expression widely between subjects at all time-points analysed but was increased by supplementation with 2 g ascorbate/d after 5 and 10 weeks. No effects on plasma potassium levels were observed in supplemented subjects despite a reduction of K+ channel proteins in ascorbate-treated T cells in vitro. Similarly, no effect of vitamin C supplementation on PBMC apoptosis was observed, whilst ascorbate decreased expression of caspase 3 recruitment domain protein in vitro. These data provide one of the first demonstrations that proteomics may be valuable in developing predictive markers of nutrient effects in vivo and may identify novel pathways for studying mechanisms of action in vivo.
Resumo:
This paper examines the question of technology transfer from the perspective of techno-economic security and how companies respond to the possibility of losing competitive advantage through misappropriation or leakage. It explores transfers from Europe to China and addresses in particular the operations of Scandinavian companies within the context of the general picture for other European firms. Its point of departure is the authors' earlier research that looked at the motivations for transfer and the awareness of companies of techno-economic security issues. This has been supplemented by new data gathered by the authors from a number of Scandinavian companies in China. Specific actions have been identified and the ownership issue is introduced together with consideration of the role of the companies against the 'Ferdows' model. The analysis shows that the nature of the security question has changed together with the evolving context in which the companies are operating. In turn, the response of companies is contingent on a number of factors including the time horizon of the strategy for a unit in China and the nature of the strategy. It is also influenced by the form of ownership and management style in a particular organisation. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Knowledge management (KM) is an emerging discipline (Ives, Torrey & Gordon, 1997) and characterised by four processes: generation, codification, transfer, and application (Alavi & Leidner, 2001). Completing the loop, knowledge transfer is regarded as a precursor to knowledge creation (Nonaka & Takeuchi, 1995) and thus forms an essential part of the knowledge management process. The understanding of how knowledge is transferred is very important for explaining the evolution and change in institutions, organisations, technology, and economy. However, knowledge transfer is often found to be laborious, time consuming, complicated, and difficult to understand (Huber, 2001; Szulanski, 2000). It has received negligible systematic attention (Huber, 2001; Szulanski, 2000), thus we know little about it (Huber, 2001). However, some literature, such as Davenport and Prusak (1998) and Shariq (1999), has attempted to address knowledge transfer within an organisation, but studies on inter-organisational knowledge transfer are still much neglected. An emergent view is that it may be beneficial for organisations if more research can be done to help them understand and, thus, to improve their inter-organisational knowledge transfer process. Therefore, this article aims to provide an overview of the inter-organisational knowledge transfer and its related literature and present a proposed inter-organisational knowledge transfer process model based on theoretical and empirical studies.
Resumo:
Foreign direct investment has been important in China's economic development since the early 1980s. In recent years, the volume of inward FDI into China, according to some estimates, has been second only to that into the USA. The Chinese government has emphasised the need for FDI to be coupled with the transfer of more advanced technologies to China. For foreign companies, technology transfer raises the risk of losing their technology based competitive advantage to potential competitor firms. This risk may be exacerbated by insufficient legal protection of intellectual property rights in China. After briefly reviewing the development of Chinese official policy on technology transfer, this paper considers the strategy adopted by EU companies regarding the transfer of technology; in particular in advanced technology sectors. The research on which the paper is based included an analysis of information gathered from 20 leading EU companies with investments in China and operating in high-technology sectors. Information was gathered from senior company managers based in both China and Europe during the second half of 1998. The main findings include a measure of reluctance on the part of EU companies to transfer their core technologies to China and to base R&D capability there. At the same time, the companies appear aware that this policy may be unsustainable in the longer-term in the face of Chinese official policy and a desire to expand their operations in China. While they attempt to protect their existing technological knowledge, most of them accept that there will be technology "leakage" and therefore the most effective strategy is to maintain their technological lead through R&D.
Resumo:
Three different stoichiometric forms of RbMn[Fe(CN) ]y·zHO [x = 0.96, y = 0.98, z = 0.75 (1); x = 0.94, y = 0.88, z = 2.17 (2); x = 0.61, y = 0.86, z = 2.71 (3)] Prussian blue analogues were synthesized and investigated by magnetic, calorimetric, Raman spectroscopic, X-ray diffraction, and Fe Mössbauer spectroscopic methods. Compounds 1 and 2 show a hysteresis loop between the high-temperature (HT) Fe(S = 1/2)-CN-Mn(S = 5/2) and the low-temperature (LT) Fe(S = 0)-CN-Mn(S = 2) forms of 61 and 135 K width centered at 273 and 215 K, respectively, whereas the third compound remains in the HT phase down to 5 K. The splitting of the quadrupolar doublets in the Fe Mössbauer spectra reveal the electron-transfer-active centers. Refinement of the X-ray powder diffraction profiles shows that electron-transfer-active materials have the majority of the Rb ions on only one of the two possible interstitial sites, whereas nonelectron-transfer-active materials have the Rb ions equally distributed. Moreover, the stability of the compounds with time and following heat treatment is also discussed. © Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
Resumo:
This is a study of heat transfer in a lift-off furnace which is employed in the batch annealing of a stack of coils of steel strip. The objective of the project is to investigate the various factors which govern the furnace design and the heat transfer resistances, so as to reduce the time of the annealing cycle, and hence minimize the operating costs. The work involved mathematical modelling of patterns of gas flow and modes of heat transfer. These models are: Heat conduction and its conjectures in the steel coils;Convective heat transfer in the plates separating the coils in the stack and in other parts of the furnace; and Radiative and convective heat transfer in the furnace by using the long furnace model. An important part of the project is the development of numerical methods and computations to solve the transient models. A limited number of temperature measurements was available from experiments on a test coil in an industrial furnace. The mathematical model agreed well with these data. The model has been used to show the following characteristics of annealing furnaces, and to suggest further developments which would lead to significant savings: - The location of the limiting temperature in a coil is nearer to the hollow core than to the outer periphery. - Thermal expansion of the steel tends to open the coils, reduces their thermal conductivity in the radial direction, and hence prolongs the annealing cycle. Increasing the tension in the coils and/or heating from the core would overcome this heat transfer resistance. - The shape and dimensions of the convective channels in the plates have significant effect on heat convection in the stack. An optimal design of a channel is shown to be of a width-to-height ratio equal to 9. - Increasing the cooling rate, by using a fluidized bed instead of the normal shell and tube exchanger, would shorten the cooling time by about 15%, but increase the temperature differential in the stack. - For a specific charge weight, a stack of different-sized coils will have a shorter annealing cycle than one of equally-sized coils, provided that production constraints allow the stacking order to be optimal. - Recycle of hot flue gases to the firing zone of the furnace would produce a. decrease in the thermal efficiency up to 30% but decreases the heating time by about 26%.
Resumo:
Mass transfer rates were studied using the falling drop method. Cibacron Blue 3 GA dye was the transferring solute from the salt phase to the PEG phase. Measurements were undertaken for several concentrations of the dye and the phase-forming solutes and with a range of different drop sizes, e.g. 2.8, 3.0 and 3.7 mm. The dye was observed to be present in the salt phase as finely dispersed solids but a model confirmed that the mass transfer process could still be described by an equation based upon the Whitman two-film model. The overall mass transfer coefficient increased with increasing concentration of the dye. The apparent mass transfer coefficient ranged from 1 x 10-5 to 2 x 10 -4 m/s. Further experiments suggested that mass transfer was enhanced at high concentration by several mechanisms. The dye was found to change the equilibrium composition of the two phases, leading to transfer of salt between the drop and continuous phases. It also lowered the interfacial tension (i.e. from 1.43 x 10-4 N/m for 0.01% w/w dye concentration to 1.07 x 10-4 N/m for 0.2% w/w dye concentration) between the two phases, which could have caused interfacial instabilities (Marangoni effects). The largest drops were deformable, which resulted in a significant increase in the mass transfer rate. Drop size distribution and Sauter mean drop diameter were studied on-line in a 1 litre agitated vessel using a laser diffraction technique. The effects of phase concentration, dispersed phase hold-up and impeller speed were investigated for the salt-PEG system. An increase in agitation speed in the range 300 rpm to 1000 rpm caused a decrease in mean drop diameter, e.g. from 50 m to 15 m. A characteristic bimodal drop size distribution was established within a very short time. An increase in agitation rate caused a shift of the larger drop size peak to a smaller size.
Resumo:
In this thesis the results of experimental work performed to determine local heat transfer coefficients for non-Newtonian fluids in laminar flow through pipes with abrupt discontinuities are reported. The fluids investigated were water-based polymeric solutiorrs of time-indpendent, pseudoplastic materials, with flow indices "n" ranging from 0.39 to 0.9.The tube configurations were a 3.3 :1 sudden convergence, and a 1: 3.3 sudden divergence.The condition of a prescribed uniform wall heat flux was considered, with both upstream and downstream tube sections heated. Radial temperature traverses were also under taken primarily to justify the procedures used in estimating the tube wall and bulk fluid temperatures and secondly to give further insight into the mechanism of heat transfer beyond a sudden tube expansion. A theoretical assessment of the influence of viscous dissipation on a non-Newtonian pseudoplastic fluid of' arbitrary index "n" was carried out. The effects of other secondary factors such as free convection and temperature-dependent consistency were evaluated empirically. In the present investigations, the test conditions were chosen to minimise the effects of natural convection and the estimates of viscous heat generation showed the effect to be insignificant with the polymeric concentrations tested here. The final results have been presented as the relationships between local heat transfer coef'ficient and axial distance downstream of the discontinuities and relationships between dimensionless wall temperature and reduced radius. The influence of Reynolds number, Prandtl number, non-Newtonian index and heat flux have been indicated.
Resumo:
The first investigation of this study is concerned with the reasonableness of the assumptions related to diffusion of water vapour in concrete and with the development of a diffusivity equation for heated concrete. It has been demonstrated that diffusion of water vapour does occur in concrete at all temperatures and that the type of diffusion is concrete is Knudsen diffusion. Neglecting diffusion leads to underestimating the pressure. It results in a maximum pore pressure of less than 1 MPa. It has also been shown that the assumption that diffusion in concrete is molecular is unreasonable even when the tortuosity is considered. Molecular diffusivity leads to overestimating the pressure. It results in a maximum pore pressure of 2.7 MPa of which the vapour pressure is 1.5 MPa while the air pressure is 1.2 MPa. Also, the first diffusivity equation, appropriately named 'concrete diffusivity', has been developed specifically for concrete that determines the effective diffusivity of any gas in concrete at any temperature. In thick walls and columns exposed to fire, concrete diffusivity leads to a maximum pore pressures of 1.5 and 2.2 MPa (along diagonals), respectively, that are almost entirely due to water vapour pressure. Also, spalling is exacerbated, and thus higher pressures may occur, in thin heated sections, since there is less of a cool reservoir towards which vapour can migrate. Furthermore, the reduction of the cool reservoir is affected not only by the thickness, but also by the time of exposure to fire and by the type of exposure, i.e. whether the concrete member is exposed to fire from one or more sides. The second investigation is concerned with examining the effects of thickness and exposure time and type. It has been demonstrated that the build up of pore pressure is low in thick members, since there is a substantial cool zone towards which water vapour can migrate. Thus, if surface and/or explosive spalling occur on a thick member, then such spalling must be due to high thermal stresses, but corner spalling is likely to be pore pressure spalling. However, depending on the exposure time and type, the pore pressures can be more than twice those occurring in thick members and thought to be the maximum that can occur so far, and thus the enhanced propensity of pore pressure spalling occurring on thin sections heated on opposite sides has been conclusively demonstrated to be due to the lack of a cool zone towards which moisture can migrate. Expressions were developed for the determination of the maximum pore pressures that can occur in different concrete walls and columns exposed to fire and of the corresponding times of exposure.
Resumo:
This research project examined the feasibility of using a cavity transfer mixer (CTM) as a continuous reactor to perform reactions between either solid or liquid reagents and polymer melt; reactions which have previously been typically carried out in batch reactor systems. Equipment has been developed to allow uniform and reproducible introduction of reagents into the polymer melt. Reactions have also been performed using batch processing equipment to enable comparison with the performance of the CTM. It was concluded that: a) there are certain reactions which cannot be carried out in a CTM, but which can be performed in a batch system such as a mill or a sigma blade mixer. This was found to be the case for some neutralisation reactions where the product was quasi crosslinked. b) the reactions that can be carried out in a CTM are performed more efficiently in a CTM than on a batch process. For example, when monomers were to be grafted onto polymers, this was more safely and efficiently performed in the CTM than in a mill or a sigma blade mixer. Residence time distributions (RTDs) for three CTMs were studied in order to gain an insight into the effect of CTM geometry on RTD, polymer melt flow pattern and reactor performance. A mathematical model has been developed to predict the influence of process parameters on RTD and the results compared with experimentally observed trends. The comparison was good. A programme of research has been drawn up to form the basis of an industrially based sponsored development project of the CTM reactor. This work programme was successfully marketed to companies with commercial interest in modified rubber and plastics as an integral part of the research programme of this thesis and the sponsored research programme has paralleled the work reported here.
Resumo:
This book is the first to focus specifically upon the relationship between refugees and intercultural transfer over an extensive period of time. Since circa 1830, a series of groups have made their way to Britain, beginning with exiles from the failed European revolutions of the mid-nineteenth century and ending with refugees who have increasingly come from beyond Europe. The book addresses four specific questions. First, what roles have individuals or groups of refugees played in cultural and political transfers to Britain since 1830? Second, can we identify a novel form of cultural production which differs from that in the homeland? Third, to what extent has dissemination within and transformation of the receiving culture occurred? Fourth, to what extent do refugee groups, themselves, undergo a process of cultural restructuring? The coverage of the individual essays ranges from high culture, through politics and everyday practices. The volume moves away from general perceptions of refugees as ‘problem groups’ and rather focuses on the way they have shaped, and indeed enriched, British cultural and political life. This book was previously published as a special issue of Immigrants and Minorities.
Resumo:
Controlled polymerization of 2-chloro-1,3-butadiene using reversible addition–fragmentation chain transfer (RAFT) polymerization has been demonstrated for the first time. 2-Chloro-1,3-butadiene, more commonly known as chloroprene, has significant industrial relevance as a crosslinked rubber, with uses ranging from adhesives to integral automotive components. However, problems surrounding the inherent toxicity of the lifecycle of the thiourea-vulcanized rubber have led to the need for control over the synthesis of poly(2-chloro-1,3-butadiene). To this end, four chain transfer agents in two different solvents have been trialed and the kinetics are discussed. 2-Cyano-2-propylbenzodithioate (CPD) is shown to polymerize 2-chloro-1,3-butadiene in THF, using AIBN as an initiator, with complete control over the target molecular weight, producing polymers with low polydispersities (Mw/Mn < 1.25 in all cases).
Resumo:
Objectives: This paper highlights the importance of analysing patient transportation in Nordic circumpolar areas. The research questions we asked are as follows: How many Finnish patients have been transferred to special care intra-country and inter-country in 2009? Does it make any difference to health care policymakers if patients are transferred inter-country? Study design: We analysed the differences in distances from health care centres to special care services within Finland, Sweden and Norway and considered the health care policy implica tions. Methods: An analysis of the time required to drive between service providers using the "Google distance meter" (http://maps.google.com/); conducting interviews with key Finnish stakeholders; and undertaking a quantitative analyses of referral data from the Lapland Hospital District. Results: Finnish patients are generally not transferred for health care services across national borders even if the distances are shorter. Conclusion: Finnish patients have limited access to health care services in circumpolar are as across the Nordic countries for 2 reasons. First, health professionals in Norway and Sweden do not speak Finnish, which presents a language problem. Second, The Social Insurance Institution of Finland does not cover the expenditures of travel or the costs of medicine. In addition, it seems that in circumpolar areas the density of Finnish service providers is greater than Swedish ones, causing many Swedish citizens to transfer to Finnish health care providers every year. However, future research is needed to determine the precise reasons for this.
Resumo:
In this paper a mathematical model based on mass transfer in plant tissues is developed. The model takes into account the diffusion and convection of each constituent within the tissue. The driving force for the convection is assumed to be the gradient of hydrostatic pressure. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but taking into account the mass exchange across the cell membrane between the intracellular and extracellular volumes. The mass transfer results in not only the change of intracellular and extracellular volumes but also the shrinkage of whole tissue. The model allows us to quantitatively simulate the time evolution of intracellular and extracellular volumes, which was observed in histological sections under the microscope. © 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper introduces a new technique for optimizing the trading strategy of brokers that autonomously trade in re- tail and wholesale markets. Simultaneous optimization of re- tail and wholesale strategies has been considered by existing studies as intractable. Therefore, each of these strategies is optimized separately and their interdependence is generally ignored, with resulting broker agents not aiming for a glob- ally optimal retail and wholesale strategy. In this paper, we propose a novel formalization, based on a semi-Markov deci- sion process (SMDP), which globally and simultaneously op- timizes retail and wholesale strategies. The SMDP is solved using hierarchical reinforcement learning (HRL) in multi- agent environments. To address the curse of dimensionality, which arises when applying SMDP and HRL to complex de- cision problems, we propose an ecient knowledge transfer approach. This enables the reuse of learned trading skills in order to speed up the learning in new markets, at the same time as making the broker transportable across market envi- ronments. The proposed SMDP-broker has been thoroughly evaluated in two well-established multi-agent simulation en- vironments within the Trading Agent Competition (TAC) community. Analysis of controlled experiments shows that this broker can outperform the top TAC-brokers. More- over, our broker is able to perform well in a wide range of environments by re-using knowledge acquired in previously experienced settings.