34 resultados para Time course
em Aston University Research Archive
Resumo:
Purpose: To determine the response of retinal vessels to differing durations of flicker light (FL) sitmulation. Methods: We recorded retinal arterial and venous vessel dilation to 12.5 Hz flicker light provocation (Retinal Vessel Analyzer, Imedos Systems) of varying duration (5, 7, 10 and 20 seconds) in twelve healthy young individuals (age range 26-45 yrs). All participants underwent a full ocular examination including intraocular pressure and blood pressure measurements. Results: Maximum dilation (MD) did not show a significant dependence on flicker duration in arteries whereas maximum constriction (MC) did. However, in veins MD significantly increased with flicker duration. Approximately 80-90% of MD in arteries is reached within 10 seconds of flicker light stimulation. Conclusions: The vast majority of arterial dilatory capacity is reached within 10 seconds of flicker light stimulation even though venous dilation continues strongly. Since the MC of arteries shows a significant dependence on flicker duration measurements at two different durations can provide more information about the retinal vascular system than at a single flicker duration alone.
Resumo:
We have used MALDI-MS imaging (MALDI-MSI) to monitor the time dependent appearance and loss of signals when tissue slices are brought rapidly to room temperature for short to medium periods of time. Sections from mouse brain were cut in a cryostat microtome, placed on a MALDI target and allowed to warm to room temperature for 30 s to 3 h. Sections were then refrozen, fixed by ethanol treatment and analysed by MALDI-MSI. The intensity of a range of markers were seen to vary across the time course, both increasing and decreasing, with the intensity of some markers changing significantly within 30 s and markers also showed tissue location specific evolution. The markers resulting from this autolysis were compared directly to those that evolved in a comparable 16 h on-tissue trypsin digest, and the markers that evolved in the two studies were seen to be substantially different. These changes offer an important additional level of location-dependent information for mapping changes and seeking disease-dependent biomarkers in the tissue. They also indicate that considerable care is required to allow comparison of biomarkers between MALDI-MSI experiments and also has implications for the standard practice of thaw-mounting multiple tissue sections onto MALDI-MS targets.
Resumo:
A neuronal cell line (NG115-401L-C3) was stimulated by mitogenic (angiotensin) and non-mitogenic (bradykinin) peptides and examined for the time course of changes in the levels of radiolabelled inositol phosphates and phospholipids. Both peptides stimulated the time-dependent production of Ins(1,4,5)P3 and related metabolites. Bradykinin caused a much larger increase in Ins(1,4,5)P3 than did angiotensin. However, both peptides stimulated similar rises in the levels of Ins(1,3,4)P3 and InsP4. Bradykinin but not angiotensin, caused a rapid (within 2 s) fall in the levels of PtdIns(4,5)P2 and PtdIns(4)P. Serum pretreatment of the cells caused a 2-3-fold potentiation of both the responses to bradykinin and angiotensin. Although significant levels of PtdIns(3)P were detected in resting cells neither mitogenic (angiotensin, insulin-like growth factor I, transforming growth factor beta) nor non-mitogenic (bradykinin, nerve growth factor interleukin-1) receptor activation changed its levels, arguing against regulation of either PtdIns 3-kinase or PtdIns(3)P phosphatase. We conclude that, as judged by the levels of its product. PtdIns(3)P, the enzyme PtdIns 3-kinase is not activated. This questions the significance of this activity in the receptor-mediated initiation of DNA synthesis.
Resumo:
The perception of global form requires integration of local visual cues across space and is the foundation for object recognition. Here we used magnetoencephalography (MEG) to study the location and time course of neuronal activity associated with the perception of global structure from local image features. To minimize neuronal activity to low-level stimulus properties, such as luminance and contrast, the local image features were held constant during all phases of the MEG recording. This allowed us to assess the relative importance of striate (V1) versus extrastriate cortex in global form perception.
Resumo:
The application of mechanical insults to the spinal cord results in profound cellular and molecular changes, including the induction of neuronal cell death and altered gene expression profiles. Previous studies have described alterations in gene expression following spinal cord injury, but the specificity of this response to mechanical stimuli is difficult to investigate in vivo. Therefore, we have investigated the effect of cyclic tensile stresses on cultured spinal cord cells from E15 Sprague-Dawley rats, using the FX3000 Flexercell Strain Unit. We examined cell morphology and viability over a 72 hour time course. Microarray analysis of gene expression was performed using the Affymetrix GeneChip System, where categorization of identified genes was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) systems. Changes in expression of 12 genes were validated with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR).
Resumo:
This multi-modal investigation aimed to refine analytic tools including proton magnetic resonance spectroscopy (1H-MRS) and fatty acid gas chromatography-mass spectrometry (GC-MS) analysis, for use with adult and paediatric populations, to investigate potential biochemical underpinnings of cognition (Chapter 1). Essential fatty acids (EFAs) are vital for the normal development and function of neural cells. There is increasing evidence of behavioural impairments arising from dietary deprivation of EFAs and their long-chain fatty acid metabolites (Chapter 2). Paediatric liver disease was used as a deficiency model to examine the relationships between EFA status and cognitive outcomes. Age-appropriate Wechsler assessments measured Full-scale IQ (FSIQ) and Information Processing Speed (IPS) in clinical and healthy cohorts; GC-MS quantified surrogate markers of EFA status in erythrocyte membranes; and 1H-MRS quantified neurometabolite markers of neuronal viability and function in cortical tissue (Chapter 3). Post-transplant children with early-onset liver disease demonstrated specific deficits in IPS compared to age-matched acute liver failure transplant patients and sibling controls, suggesting that the time-course of the illness is a key factor (Chapter 4). No signs of EFA deficiency were observed in the clinical cohort, suggesting that EFA metabolism was not significantly impacted by liver disease. A strong, negative correlation was observed between omega-6 fatty acids and FSIQ, independent of disease diagnosis (Chapter 5). In a study of healthy adults, effect sizes for the relationship between 1H-MRS- detectable neurometabolites and cognition fell within the range of previous work, but were not statistically significant. Based on these findings, recommendations are made emphasising the need for hypothesis-driven enquiry and greater subtlety of data analysis (Chapter 6). Consistency of metabolite values between paediatric clinical cohorts and controls indicate normal neurodevelopment, but the lack of normative, age-matched data makes it difficult to assess the true strength of liver disease-associated metabolite changes (Chapter 7). Converging methods offer a challenging but promising and novel approach to exploring brain-behaviour relationships from micro- to macroscopic levels of analysis (Chapter 8).
Resumo:
We used magnetoencephalography (MEG) to examine the nature of oscillatory brain rhythms when passively viewing both illusory and real visual contours. Three stimuli were employed: a Kanizsa triangle; a Kanizsa triangle with a real triangular contour superimposed; and a control figure in which the corner elements used to form the Kanizsa triangle were rotated to negate the formation of illusory contours. The MEG data were analysed using synthetic aperture magnetometry (SAM) to enable the spatial localisation of task-related oscillatory power changes within specific frequency bands, and the time-course of activity within given locations-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. In contrast to earlier studies, we did not find increases in gamma activity (> 30 Hz) to illusory shapes, but instead a decrease in 10–30 Hz activity approximately 200 ms after stimulus presentation. The reduction in oscillatory activity was primarily evident within extrastriate areas, including the lateral occipital complex (LOC). Importantly, this same pattern of results was evident for each stimulus type. Our results further highlight the importance of the LOC and a network of posterior brain regions in processing visual contours, be they illusory or real in nature. The similarity of the results for both real and illusory contours, however, leads us to conclude that the broadband (< 30 Hz) decrease in power we observed is more likely to reflect general changes in visual attention than neural computations specific to processing visual contours.
Resumo:
A new general linear model (GLM) beamformer method is described for processing magnetoencephalography (MEG) data. A standard nonlinear beamformer is used to determine the time course of neuronal activation for each point in a predefined source space. A Hilbert transform gives the envelope of oscillatory activity at each location in any chosen frequency band (not necessary in the case of sustained (DC) fields), enabling the general linear model to be applied and a volumetric T statistic image to be determined. The new method is illustrated by a two-source simulation (sustained field and 20 Hz) and is shown to provide accurate localization. The method is also shown to locate accurately the increasing and decreasing gamma activities to the temporal and frontal lobes, respectively, in the case of a scintillating scotoma. The new method brings the advantages of the general linear model to the analysis of MEG data and should prove useful for the localization of changing patterns of activity across all frequency ranges including DC (sustained fields). © 2004 Elsevier Inc. All rights reserved.
Resumo:
Proteolysis-inducing factor (PIF) is a sulphated glycoprotein produced by cachexia-inducing tumours, which initiates muscle protein degradation through an increased expression of the ubiquitin–proteasome proteolytic pathway. The role of kinase C (PKC) in PIF-induced proteasome expression has been studied in murine myotubes as a surrogate model of skeletal muscle. Proteasome expression induced by PIF was attenuated by 4alpha-phorbol 12-myristate 13-acetate (100 nM) and by the PKC inhibitors Ro31-8220 (10 muM), staurosporine (300 nM), calphostin C (300 nM) and Gö 6976 (200 muM). Proteolysis-inducing factor-induced activation of PKCalpha, with translocation from the cytosol to the membrane at the same concentration as that inducing proteasome expression, and this effect was attenuated by calphostin C. Myotubes transfected with a constitutively active PKCalpha (pCO2) showed increased expression of proteasome activity, and a longer time course, compared with their wild-type counterparts. In contrast, myotubes transfected with a dominant-negative PKCalpha (pKS1), which showed no activation of PKCalpha in response to PIF, exhibited no increase in proteasome activity at any time point. Proteolysis-inducing factor-induced proteasome expression has been suggested to involve the transcription factor nuclear factor-kappaB (NF-kappaB), which may be activated through PKC. Proteolysis-inducing factor induced a decrease in cytosolic I-kappaBalpha and an increase in nuclear binding of NF-kappaB in pCO2, but not in pKS1, and the effect in wild-type cells was attenuated by calphostin C, confirming that it was mediated through PKC. This suggests that PKC may be involved in the phosphorylation and degradation of I-kappaBalpha, induced by PIF, necessary for the release of NF-kappaB from its inactive cytosolic complex.
Resumo:
The effectiveness of rapid and controlled heating of intact tissue to inactivate native enzymatic activity and prevent proteome degradation has been evaluated. Mouse brains were bisected immediately following excision, with one hemisphere being heat treated followed by snap freezing in liquid nitrogen while the other hemisphere was snap frozen immediately. Sections were cut by cryostatic microtome and analyzed by MALDI-MS imaging and minimal label 2-D DIGE, to monitor time-dependent relative changes in intensities of protein and peptide signals. Analysis by MALDI-MS imaging demonstrated that the relative intensities of markers varied across a time course (0-5 min) when the tissues were not stabilized by heat treatment. However, the same markers were seen to be stabilized when the tissues were heat treated before snap freezing. Intensity profiles for proteins indicative of both degradation and stabilization were generated when samples of treated and nontreated tissues were analyzed by 2-D DIGE, with protein extracted before and after a 10-min warming of samples. Thus, heat treatment of tissues at the time of excision is shown to prevent subsequent uncontrolled degradation of tissues at the proteomic level before any quantitative analysis, and to be compatible with downstream proteomic analysis.
Resumo:
Both animal and human studies suggest that the efficiency with which we are able to grasp objects is attributable to a repertoire of motor signals derived directly from vision. This is in general agreement with the long-held belief that the automatic generation of motor signals by the perception of objects is based on the actions they afford. In this study, we used magnetoencephalography (MEG) to determine the spatial distribution and temporal dynamics of brain regions activated during passive viewing of object and non-object targets that varied in the extent to which they afforded a grasping action. Synthetic Aperture Magnetometry (SAM) was used to localize task-related oscillatory power changes within specific frequency bands, and the time course of activity within given regions-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. Both single subject and group-averaged data on the spatial distribution of brain activity are presented. We show that: (i) significant reductions in 10-25 Hz activity within extrastriate cortex, occipito-temporal cortex, sensori-motor cortex and cerebellum were evident with passive viewing of both objects and non-objects; and (ii) reductions in oscillatory activity within the posterior part of the superior parietal cortex (area Ba7) were only evident with the perception of objects. Assuming that focal reductions in low-frequency oscillations (< 30 Hz) reflect areas of heightened neural activity, we conclude that: (i) activity within a network of brain areas, including the sensori-motor cortex, is not critically dependent on stimulus type and may reflect general changes in visual attention; and (ii) the posterior part of the superior parietal cortex, area Ba7, is activated preferentially by objects and may play a role in computations related to grasping. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Neuronal network oscillations are a unifying phenomenon in neuroscience research, with comparable measurements across scales and species. Cortical oscillations are of central importance in the characterization of neuronal network function in health and disease and are influential in effective drug development. Whilst animal in vitro and in vivo electrophysiology is able to characterize pharmacologically induced modulations in neuronal activity, present human counterparts have spatial and temporal limitations. Consequently, the potential applications for a human equivalent are extensive. Here, we demonstrate a novel implementation of contemporary neuroimaging methods called pharmaco-magnetoencephalography. This approach determines the spatial profile of neuronal network oscillatory power change across the cortex following drug administration and reconstructs the time course of these modulations at focal regions of interest. As a proof of concept, we characterize the nonspecific GABAergic modulator diazepam, which has a broad range of therapeutic applications. We demonstrate that diazepam variously modulates ? (4–7 Hz), a (7–14 Hz), ß (15–25 Hz), and ? (30–80 Hz) frequency oscillations in specific regions of the cortex, with a pharmacodynamic profile consistent with that of drug uptake. We examine the relevance of these results with regard to the spatial and temporal observations from other modalities and the various therapeutic consequences of diazepam and discuss the potential applications of such an approach in terms of drug development and translational neuroscience.
Resumo:
Relations between spatial attention and motor intention were investigated by means of an EEG potential elicited by shifting attention to a location in space as well as by the selection of a hand for responding. High-density recordings traced this potential to a common frontoparietal network activated by attentional orienting and by response selection. Within this network, parietal and frontal cortex were activated sequentially, followed by an anterior-to-posterior migration of activity culminating in the lateral occipital cortex. Based on temporal and polarity information provided by EEG, we hypothesize that the frontoparietal activation, evoked by directional information, updates a task-defined preparatory state by deselecting or inhibiting the behavioral option competing with the cued response side or the cued direction of attention. These results from human EEG demonstrate a direct EEG manifestation of the frontoparietal attention network previously identified in functional imaging. EEG reveals the time course of activation within this network and elucidates the generation and function of associated directing-attention EEG potentials. The results emphasize transient activation and a decision-related function of the frontoparietal attention network, contrasting with the sustained preparatory activation that is commonly inferred from neuroimaging.
Resumo:
In a series of experiments, we tested category-specific activation in normal parti¬cipants using magnetoencephalography (MEG). Our experiments explored the temporal processing of objects, as MEG characterises neural activity on the order of milliseconds. Our experiments explored object-processing, including assessing the time-course of ob¬ject naming, early differences in processing living compared with nonliving objects and processing objects at the basic compared with the domain level, and late differences in processing living compared with nonliving objects and processing objects at the basic compared with the domain level. In addition to studies using normal participants, we also utilised MEG to explore category-specific processing in a patient with a deficit for living objects. Our findings support the cascade model of object naming (Humphreys et al., 1988). In addition, our findings using normal participants demonstrate early, category-specific perceptual differences. These findings are corroborated by our patient study. In our assessment of the time-course of category-specific effects as well as a separate analysis designed to measure semantic differences between living and nonliving objects, we found support for the sensory/motor model of object naming (Martin, 1998), in addition to support for the cascade model of object naming. Thus, object processing in normal participants appears to be served by a distributed network in the brain, and there are both perceptual and semantic differences between living and nonliving objects. A separate study assessing the influence of the level at which you are asked to identify an object on processing in the brain found evidence supporting the convergence zone hypothesis (Damasio, 1989). Taken together, these findings indicate the utility of MEG in exploring the time-course of object processing, isolating early perceptual and later semantic effects within the brain.
Resumo:
The experiments described in this thesis compared conventional methods of screening for neurotoxins with potential electrophysiological and pharmacological tests in an attempt to improve the sensitivity of detection of progressive distal neuropathy. Adult male albino mice were dosed orally with the neurotoxicant acylamide and subjected to a test of limb strength and co-ordination and a functional observational battery. These methods established a no observable effect level of 10 mg/kg. A dose of 200 mg/kg resulted in abnormalities of gait and reduced limb strength and/or co-ordination. Analysis of the in vitro 'jitter' of the latency of trains of action potentials evoked at a frequency of 30 Hz in the mouse phrenic nerve/hemidiaphragm preparation showed this technique to be unsuitable for detection of the early phases of acrylamide induced peripheral neuropathy (l00 mg/kg). The evoked and spontaneous twitch responses of the hemidiaphragm preparation following in vitro exposure to the organophosphorous anticholinesterase compound ecothiopate were altered by in vivo pre treatment with acrylamide. Acrylamide caused an increase in the time course of the potentiation of stimulated twitches and a decrease in the maximum potentiation. Spontaneous twitches were reduced in amplitude and frequency. These effects occurred at an acrylamide dose level insufficient to cause clinical signs of neuropathy. Investigations into the mechanisms underlying these observations yielded the following observations. Analysis of miniature endplate potentials at this dose level indicated prolongation of the life of acetylcholine in the synaptic cleft but the implied decrease in cholinesterase activity could not be demonstrated biochemically or histologically. The electrical excitability of the nerve terminal region of phrenic motor nerves was reduced following acrylamide although a possible compromise of antidromic action potential conduction could not be confirmed. There was no histopathological evidence of neuropathy at this dose level. Further exploration of this phenomenon is desirable in order to ascertain whether the effect is specific to acrylamide and/or ecothiopate and to elucidate the mechanisms behind these novel observations.