10 resultados para Time activity pattern
em Aston University Research Archive
Resumo:
Visual perception begins by dissecting the retinal image into millions of small patches for local analyses by local receptive fields. However, image structures extend well beyond these receptive fields and so further processes must be involved in sewing the image fragments back together to derive representations of higher order (more global) structures. To investigate the integration process, we also need to understand the opposite process of suppression. To investigate both processes together, we measured triplets of dipper functions for targets and pedestals involving interdigitated stimulus pairs (A, B). Previous work has shown that summation and suppression operate over the full contrast range for the domains of ocularity and space. Here, we extend that work to include orientation and time domains. Temporal stimuli were 15-Hz counter-phase sine-wave gratings, where A and B were the positive and negative phases of the oscillation, respectively. For orientation, we used orthogonally oriented contrast patches (A, B) whose sum was an isotropic difference of Gaussians. Results from all four domains could be understood within a common framework in which summation operates separately within the numerator and denominator of a contrast gain control equation. This simple arrangement of summation and counter-suppression achieves integration of various stimulus attributes without distorting the underlying contrast code.
Resumo:
Diabetes mellitus (DM) is a metabolic disorder which is characterised by hyperglycaemia resulting from defects in insulin secretion, insulin action or both. The long-term specific effects of DM include the development of retinopathy, nephropathy and neuropathy. Cardiac disease, peripheral arterial and cerebrovascular disease are also known to be linked with DM. Type 1 diabetes mellitus (T1DM) accounts for approximately 10% of all individuals with DM, and insulin therapy is the only available treatment. Type 2 diabetes mellitus (T2DM) accounts for 90% of all individuals with DM. Diet, exercise, oral hypoglycaemic agents and occasionally exogenous insulin are used to manage T2DM. The diagnosis of DM is made where the glycated haemoglobin (HbA1c) percentage is greater than 6.5%. Pattern-reversal visual evoked potential (PVEP) testing is an objective means of evaluating impulse conduction along the central nervous pathways. Increased peak time of the visual P100 waveform is an expression of structural damage at the level of myelinated optic nerve fibres. This was an observational cross sectional study. The participants were grouped into two phases. Phase 1, the control group, consisted of 30 healthy non-diabetic participants. Phase 2 comprised of 104 diabetic participants of whom 52 had an HbA1c greater than 10% (poorly controlled DM) and 52 whose HbA1c was 10% and less (moderately controlled DM). The aim of this study was to firstly observe the possible association between glycated haemoglobin levels and P100 peak time of pattern-reversal visual evoked potentials (PVEPs) in DM. Secondly, to assess whether the central nervous system (CNS) and in particular visual function is affected by type and/or duration of DM. The cut-off values to define P100 peak time delay was calculated as the mean P100 peak time plus 2.5 X standard deviations as measured for the non-diabetic control group, and were 110.64 ms for the right eye. The proportion of delayed P100 peak time amounted to 38.5% for both diabetic groups, thus the poorly controlled group (HbA1c > 10%) did not pose an increased risk for delayed P100 peak time, relative to the moderately controlled group (HbA1c ≤ 10%). The P100 PVEP results for this study, do however, reflect significant delay (p < 0.001) of the DM group as compared to the non-diabetic group; thus, subclincal neuropathy of the CNS occurs in 38.5% of cases. The duration of DM and type of DM had no influence on the P100 peak time measurements.
Resumo:
We used magnetoencephalography (MEG) to examine the nature of oscillatory brain rhythms when passively viewing both illusory and real visual contours. Three stimuli were employed: a Kanizsa triangle; a Kanizsa triangle with a real triangular contour superimposed; and a control figure in which the corner elements used to form the Kanizsa triangle were rotated to negate the formation of illusory contours. The MEG data were analysed using synthetic aperture magnetometry (SAM) to enable the spatial localisation of task-related oscillatory power changes within specific frequency bands, and the time-course of activity within given locations-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. In contrast to earlier studies, we did not find increases in gamma activity (> 30 Hz) to illusory shapes, but instead a decrease in 10–30 Hz activity approximately 200 ms after stimulus presentation. The reduction in oscillatory activity was primarily evident within extrastriate areas, including the lateral occipital complex (LOC). Importantly, this same pattern of results was evident for each stimulus type. Our results further highlight the importance of the LOC and a network of posterior brain regions in processing visual contours, be they illusory or real in nature. The similarity of the results for both real and illusory contours, however, leads us to conclude that the broadband (< 30 Hz) decrease in power we observed is more likely to reflect general changes in visual attention than neural computations specific to processing visual contours.
Resumo:
Background & Aims: Current models of visceral pain processing derived from metabolic brain imaging techniques fail to differentiate between exogenous (stimulus-dependent) and endogenous (non-stimulus-specific) neural activity. The aim of this study was to determine the spatiotemporal correlates of exogenous neural activity evoked by painful esophageal stimulation. Methods: In 16 healthy subjects (8 men; mean age, 30.2 ± 2.2 years), we recorded magnetoencephalographic responses to 2 runs of 50 painful esophageal electrical stimuli originating from 8 brain subregions. Subsequently, 11 subjects (6 men; mean age, 31.2 ± 1.8 years) had esophageal cortical evoked potentials recorded on a separate occasion by using similar experimental parameters. Results: Earliest cortical activity (P1) was recorded in parallel in the primary/secondary somatosensory cortex and posterior insula (∼85 ms). Significantly later activity was seen in the anterior insula (∼103 ms) and cingulate cortex (∼106 ms; P = .0001). There was no difference between the P1 latency for magnetoencephalography and cortical evoked potential (P = .16); however, neural activity recorded with cortical evoked potential was longer than with magnetoencephalography (P = .001). No sex differences were seen for psychophysical or neurophysiological measures. Conclusions: This study shows that exogenous cortical neural activity evoked by experimental esophageal pain is processed simultaneously in somatosensory and posterior insula regions. Activity in the anterior insula and cingulate - brain regions that process the affective aspects of esophageal pain - occurs significantly later than in the somatosensory regions, and no sex differences were observed with this experimental paradigm. Cortical evoked potential reflects the summation of cortical activity from these brain regions and has sufficient temporal resolution to separate exogenous and endogenous neural activity. © 2005 by the American Gastroenterological Association.
Resumo:
The loss of dopamine in idiopathic or animal models of Parkinson's disease induces synchronized low-frequency oscillatory burst-firing in subthalamic nucleus neurones. We sought to establish whether these firing patterns observed in vivo were preserved in slices taken from dopamine-depleted animals, thus establishing a role for the isolated subthalamic-globus pallidus complex in generating the pathological activity. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) showed significant reductions of over 90% in levels of dopamine as measured in striatum by high pressure liquid chromatography. Likewise, significant reductions in tyrosine hydroxylase immunostaining within the striatum (>90%) and tyrosine hydroxylase positive cell numbers (65%) in substantia nigra were observed. Compared with slices from intact mice, neurones in slices from MPTP-lesioned mice fired significantly more slowly (mean rate of 4.2 Hz, cf. 7.2 Hz in control) and more irregularly (mean coefficient of variation of inter-spike interval of 94.4%, cf. 37.9% in control). Application of ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonopentanoic acid (AP5) and the GABAA receptor antagonist picrotoxin caused no change in firing pattern. Bath application of dopamine significantly increased cell firing rate and regularized the pattern of activity in cells from slices from both MPTP-treated and control animals. Although the absolute change was more modest in control slices, the maximum dopamine effect in the two groups was comparable. Indeed, when taking into account the basal firing rate, no differences in the sensitivity to dopamine were observed between these two cohorts. Furthermore, pairs of subthalamic nucleus cells showed no correlated activity in slices from either control (21 pairs) or MPTP-treated animals (20 pairs). These results indicate that the isolated but interconnected subthalamic-globus pallidus network is not itself sufficient to generate the aberrant firing patterns in dopamine-depleted animals. More likely, inputs from other regions, such as the cortex, are needed to generate pathological oscillatory activity. © 2006 IBRO.
Resumo:
The aim of this study was to explore the relationship between electroencephalographic (EEG) activity in the gamma frequency range and conscious awareness of a visual stimulus. EEG was recorded from subjects while they were shown backward-masked words only some of which they were able to discriminate correctly. The results showed that activity in the gamma frequency range increase with reported awareness of a word independently of whether it was correctly discriminated or not. It is concluded that gamma power is associated with awareness-dependent visual processing but not with processing that occurs in the absence of awareness.
Resumo:
In this work we investigate the effect of temperature and diameter size on the response time of a poly(methyl methacrylate) based, polymer optical fibre Bragg grating water activity sensor. The unstrained and etched sensor was placed in an environmental chamber to maintain controlled temperature and humidity conditions and subjected to step changes in humidity. The data show a strong correlation between decrease in diameter and shorter response time. A decrease in response time was also observed with an increase in temperature.
Resumo:
We consider the suppression of spatiotemporal chaos in the complex GinzburgLandau equation by a combined global and local time-delay feedback. Feedback terms are implemented as a control scheme, i.e., they are proportional to the difference between the time-delayed state of the system and its current state. We perform a linear stability analysis of uniform oscillations with respect to space-dependent perturbations and compare with numerical simulations. Similarly, for the fixed-point solution that corresponds to amplitude death in the spatially extended system, a linear stability analysis with respect to space-dependent perturbations is performed and complemented by numerical simulations. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Purpose: This paper extends the use of Radio Frequency Identification (RFID) data for accounting of warehouse costs and services. Time Driven Activity Based Costing (TDABC) methodology is enhanced with the real-time collected RFID data about duration of warehouse activities. This allows warehouse managers to have accurate and instant calculations of costs. The RFID enhanced TDABC (RFID-TDABC) is proposed as a novel application of the RFID technology. Research Approach: Application of RFID-TDABC in a warehouse is implemented on warehouse processes of a case study company. Implementation covers receiving, put-away, order picking, and despatching. Findings and Originality: RFID technology is commonly used for the identification and tracking items. The use of the RFID generated information with the TDABC can be successfully extended to the area of costing. This RFID-TDABC costing model will benefit warehouse managers with accurate and instant calculations of costs. Research Impact: There are still unexplored benefits to RFID technology in its applications in warehousing and the wider supply chain. A multi-disciplinary research approach led to combining RFID technology and TDABC accounting method in order to propose RFID-TDABC. Combining methods and theories from different fields with RFID, may lead researchers to develop new techniques such as RFID-TDABC presented in this paper. Practical Impact: RFID-TDABC concept will be of value to practitioners by showing how warehouse costs can be accurately measured by using this approach. Providing better understanding of incurred costs may result in a further optimisation of warehousing operations, lowering costs of activities, and thus provide competitive pricing to customers. RFID-TDABC can be applied in a wider supply chain.