10 resultados para Three-phase three-wire
em Aston University Research Archive
Resumo:
The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.
Resumo:
The results of three wave mixing experiments in photorefractive Bi12SiO20 are presented. The results confirm theoretical predictions that amplification by three wave mixing is strongly dependent on the phase relationship between the three beams at the input to the medium.
Resumo:
The results of three wave mixing experiments in photorefractive Bi12SiO20 are presented. The results confirm theoretical predictions that amplification by three wave mixing is strongly dependent on the phase relationship between the three beams at the input to the medium.
Resumo:
Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP.
Resumo:
A single-stage, three-phase AC-to-DC converter topology is proposed for high-frequency power supply applications. The principal features of the circuit include continuous current operation of the three AC input inductors, inherent shaping of the input currents, resulting in high power factor, a transformer isolated output, and only two active devices are required, both soft-switched. Resonant conversion techniques are used, and a high power factor is achieved by injecting high-frequency currents into the three-phase rectifier, producing a high frequency modulation of the rectifier input voltages. The current injection principle is explained and the system operation is confirmed by a combination of simulation and experimental results.
Resumo:
Switched reluctance motors (SRMs) are gaining in popularity because of their robustness, low cost, and excellent high-speed characteristics. However, they are known to cause vibration and noise primarily due to the radial pulsating force resulting from their double-saliency structure. This paper investigates the effect of skewing the stator and/or rotor on the vibration reduction of the three-phase SRMs by developing four 12/8-pole SRMs, including a conventional SRM, a skewed rotor-SRM (SR-SRM), a skewed stator-SRM (SS-SRM), and a skewed stator and rotor-SRM (SSR-SRM). The radial force distributed on the stator yoke under different skewing angles is extensively studied by the finite-element method and experimental tests on the four prototypes. The inductance and torque characteristics of the four motors are also compared, and a control strategy by modulating the turn-ON and turn-OFF angles for the SR-SRM and the SS-SRM are also presented. Furthermore, experimental results validate the numerical models and the effectiveness of the skewing in reducing the motor vibration. Test results also suggest that skewing the stator is more effective than skewing the rotor in the SRMs.
Resumo:
Advances in both computer technology and the necessary mathematical models capable of capturing the geometry of arbitarily shaped objects has led to the development in this thesis of a surface generation package called 'IBSCURF' aimed at providing a more economically viable solution to free-form surface manufacture. A suit of computer programs written in FORTRAN 77 has been developed to provide computer aids for every aspect of work in designing and machining free-form surfaces. A vector-valued parametric method was used for shape description and a lofting technique employed for the construction of the surface. The development of the package 'IBSCURF' consists of two phases. The first deals with CAD. The design process commences in defining the cross-sections which are represented by uniform B-spline curves as approximations to give polygons. The order of the curve and the position and number of the polygon vertices can be used as parameters for the modification to achieve the required curves. When the definitions of the sectional curves is complete, the surface is interpolated over them by cubic cardinal splines. To use the CAD function of the package to design a mould for a plastic handle, a mathematical model was developed. To facilitate the integration of design and machining using the mathematical representation of the surface, the second phase of the package is concerned with CAM which enables the generation of tool offset positions for ball-nosed cutters and a general post-processor has been developed which automatically generates NC tape programs for any CNC milling machine. The two phases of these programs have been successfully implemented, as a CAD/CAM package for free-form surfaces on the VAX 11/750 super-minicomputer with graphics facilities for displaying drawings interactively on the terminal screen. The development of this package has been beneficial in all aspects of design and machining of free form surfaces.
Resumo:
A significant number of poly a-ester homologues of poly(L-lactide) (PLLA) have been synthesized and used in miscibility studies together with conventional isomeric diacid-diol polyester variants, poly ß-esters (based on ß-hydroxybutyrate (HB) and ß-hydroxyvalerate (HV)), poly e-caprolactone (PCL), poly e-caprolactone copolymers (e.g. poly(L-lactide-co-caprolactone), and a series of cellulose-based polymers (e.g. cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP)). A combinatorial approach to rapid miscibility screening using 96-well plates and a uv-visible multi-wavelength plate reader has been developed enabling the clarity of PLLA-based multi-component blend films to be observed. Using these techniques and materials, the ternary phase compatibility diagrams of a range of three-component blend films was prepared, illustrating ranges of behavior varying from miscible blends giving rise to clear films to immiscible blends which are opaque. In this way, novel three-component blends of PLLA/CAB/PCL were developed which are miscible when the CAB content is more than 30%, PLLA less than 80% and PCL less than 60%.
Resumo:
System efficiency and cost effectiveness are of critical importance for photovoltaic (PV) systems. This paper addresses the two issues by developing a novel three-port dc-dc converter for stand-alone PV systems, based on an improved Flyback-Forward topology. It provides a compact single-unit solution with a combined feature of optimized maximum power point tracking (MPPT), high step-up ratio, galvanic isolation, and multiple operating modes for domestic and aerospace applications. A theoretical analysis is conducted to analyze the operating modes followed by simulation and experimental work. This paper is focused on a comprehensive modulation strategy utilizing both PWM and phase-shifted control that satisfies the requirement of PV power systems to achieve MPPT and output voltage regulation. A 250-W converter was designed and prototyped to provide experimental verification in term of system integration and high conversion efficiency.