26 resultados para Three dimensional finite element analysis

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional finite element analysis (FEA) model with elastic-plastic anisotropy was built to investigate the effects of anisotropy on nanoindentation measurements for cortical bone. The FEA model has demonstrated a capability to capture the cortical bone material response under the indentation process. By comparison with the contact area obtained from monitoring the contact profile in FEA simulations, the Oliver-Pharr method was found to underpredict or overpredict the contact area due to the effects of anisotropy. The amount of error (less than 10% for cortical bone) depended on the indentation orientation. The indentation modulus results obtained from FEA simulations at different surface orientations showed a trend similar to experimental results and were also similar to moduli calculated from a mathematical model. The Oliver-Pharr method has been shown to be useful for providing first-order approximations in the analysis of anisotropic mechanical properties of cortical bone, although the indentation modulus is influenced by anisotropy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle impacts are of fundamental importance in many areas and there has been a renewed interest in research on particle impact problems. A comprehensive investigation of the particle impact problems, using finite element (FE) methods, is presented in this thesis. The capability of FE procedures for modelling particle impacts is demonstrated by excellent agreements between FE analysis results and previous theoretical, experimental and numerical results. For normal impacts of elastic particles, it is found that the energy loss due to stress wave propagation is negligible if it can reflect more than three times during the impact, for which Hertz theory provides a good prediction of impact behaviour provided that the contact deformation is sufficiently small. For normal impact of plastic particles, the energy loss due to stress wave propagation is also generally negligible so that the energy loss is mainly due to plastic deformation. Finite-deformation plastic impact is addressed in this thesis so that plastic impacts can be categorised into elastic-plastic impact and finite-deformation plastic impact. Criteria for the onset of finite-deformation plastic impacts are proposed in terms of impact velocity and material properties. It is found that the coefficient of restitution depends mainly upon the ratio of impact velocity to yield Vni/Vy0 for elastic-plastic impacts, but it is proportional to [(Vni/Vy0)*(Y/E*)]-1/2, where Y /E* is the representative yield strain for finite-deformation plastic impacts. A theoretical model for elastic-plastic impacts is also developed and compares favourably with FEA and previous experimental results. The effect of work hardening is also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human accommodation system has been extensively examined for over a century, with a particular focus on trying to understand the mechanisms that lead to the loss of accommodative ability with age (Presbyopia). The accommodative process, along with the potential causes of presbyopia, are disputed; hindering efforts to develop methods of restoring accommodation in the presbyopic eye. One method that can be used to provide insight into this complex area is Finite Element Analysis (FEA). The effectiveness of FEA in modelling the accommodative process has been illustrated by a number of accommodative FEA models developed to date. However, there have been limitations to these previous models; principally due to the variation in data on the geometry of the accommodative components, combined with sparse measurements of their material properties. Despite advances in available data, continued oversimplification has occurred in the modelling of the crystalline lens structure and the zonular fibres that surround the lens. A new accommodation model was proposed by the author that aims to eliminate these limitations. A novel representation of the zonular structure was developed, combined with updated lens and capsule modelling methods. The model has been designed to be adaptable so that a range of different age accommodation systems can be modelled, allowing the age related changes that occur to be simulated. The new modelling methods were validated by comparing the changes induced within the model to available in vivo data, leading to the definition of three different age models. These were used in an extended sensitivity study on age related changes, where individual parameters were altered to investigate their effect on the accommodative process. The material properties were found to have the largest impact on the decline in accommodative ability, in particular compared to changes in ciliary body movement or zonular structure. Novel data on the importance of the capsule stiffness and thickness was also established. The new model detailed within this thesis provides further insight into the accommodation mechanism, as well as a foundation for future, more detailed investigations into accommodation, presbyopia and accommodative restoration techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element analysis is a useful tool in understanding how the accommodation system of the eye works. Further to simpler FEA models that have been used hitherto, this paper describes a sensitivity study which aims to understand which parameters of the crystalline lens are key to developing an accurate model of the accommodation system. A number of lens models were created, allowing the mechanical properties, internal structure and outer geometry to be varied. These models were then spun about their axes, and the deformations determined. The results showed the mechanical properties are the critical parameters, with the internal structure secondary. Further research is needed to fully understand how the internal structure and properties interact to affect lens deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to investigate the integration of computer-aided drafting and finite-element analysis in a linked computer-aided design procedure and to develop the necessary software. The Be'zier surface patch for surface representation was used to bridge the gap between the rather separate fields of drafting and finite-element analysis because the surfaces are defined by analytical functions which allow systematic and controlled variation of the shape and provide continuous derivatives up to any required degree. The objectives of this research were achieved by establishing : (i) A package which interpretes the engineering drawings of plate and shell structures and prepares the Be'zier net necessary for surface representation. (ii) A general purpose stand-alone meshed-surface modelling package for surface representation of plates and shells using the Be'zier surface patch technique. (iii) A translator which adapts the geometric description of plate and shell structures as given by the meshed-surface modeller to the form needed by the finite-element analysis package. The translator was extended to suit fan impellers by taking advantage of their sectorial symmetry. The linking processes were carried out for simple test structures, simplified and actual fan impellers to verify the flexibility and usefulness of the linking technique adopted. Finite-element results for thin plate and shell structures showed excellent agreement with those obtained by other investigators while results for the simplified and actual fan impellers also showed good agreement with those obtained in an earlier investigation where finite-element analysis input data were manually prepared. Some extensions of this work have also been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element process is now used almost routinely as a tool of engineering analysis. From early days, a significant effort has been devoted to developing simple, cost effective elements which adequately fulfill accuracy requirements. In this thesis we describe the development and application of one of the simplest elements available for the statics and dynamics of axisymmetric shells . A semi analytic truncated cone stiffness element has been formulated and implemented in a computer code: it has two nodes with five degrees of freedom at each node, circumferential variations in displacement field are described in terms of trigonometric series, transverse shear is accommodated by means of a penalty function and rotary inertia is allowed for. The element has been tested in a variety of applications in the statics and dynamics of axisymmetric shells subjected to a variety of boundary conditions. Good results have been obtained for thin and thick shell cases .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical techniques have been finding increasing use in all aspects of fracture mechanics, and often provide the only means for analyzing fracture problems. The work presented here, is concerned with the application of the finite element method to cracked structures. The present work was directed towards the establishment of a comprehensive two-dimensional finite element, linear elastic, fracture analysis package. Significant progress has been made to this end, and features which can now be studied include multi-crack tip mixed-mode problems, involving partial crack closure. The crack tip core element was refined and special local crack tip elements were employed to reduce the element density in the neighbourhood of the core region. The work builds upon experience gained by previous research workers and, as part of the general development, the program was modified to incorporate the eight-node isoparametric quadrilateral element. Also. a more flexible solving routine was developed, and provided a very compact method of solving large sets of simultaneous equations, stored in a segmented form. To complement the finite element analysis programs, an automatic mesh generation program has been developed, which enables complex problems. involving fine element detail, to be investigated with a minimum of input data. The scheme has proven to be versati Ie and reasonably easy to implement. Numerous examples are given to demonstrate the accuracy and flexibility of the finite element technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modelling of mechanical structures using finite element analysis has become an indispensable stage in the design of new components and products. Once the theoretical design has been optimised a prototype may be constructed and tested. What can the engineer do if the measured and theoretically predicted vibration characteristics of the structure are significantly different? This thesis considers the problems of changing the parameters of the finite element model to improve the correlation between a physical structure and its mathematical model. Two new methods are introduced to perform the systematic parameter updating. The first uses the measured modal model to derive the parameter values with the minimum variance. The user must provide estimates for the variance of the theoretical parameter values and the measured data. Previous authors using similar methods have assumed that the estimated parameters and measured modal properties are statistically independent. This will generally be the case during the first iteration but will not be the case subsequently. The second method updates the parameters directly from the frequency response functions. The order of the finite element model of the structure is reduced as a function of the unknown parameters. A method related to a weighted equation error algorithm is used to update the parameters. After each iteration the weighting changes so that on convergence the output error is minimised. The suggested methods are extensively tested using simulated data. An H frame is then used to demonstrate the algorithms on a physical structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology is presented which can be used to produce the level of electromagnetic interference, in the form of conducted and radiated emissions, from variable speed drives, the drive that was modelled being a Eurotherm 583 drive. The conducted emissions are predicted using an accurate circuit model of the drive and its associated equipment. The circuit model was constructed from a number of different areas, these being: the power electronics of the drive, the line impedance stabilising network used during the experimental work to measure the conducted emissions, a model of an induction motor assuming near zero load, an accurate model of the shielded cable which connected the drive to the motor, and finally the parasitic capacitances that were present in the drive modelled. The conducted emissions were predicted with an error of +/-6dB over the frequency range 150kHz to 16MHz, which compares well with the limits set in the standards which specify a frequency range of 150kHz to 30MHz. The conducted emissions model was also used to predict the current and voltage sources which were used to predict the radiated emissions from the drive. Two methods for the prediction of the radiated emissions from the drive were investigated, the first being two-dimensional finite element analysis and the second three-dimensional transmission line matrix modelling. The finite element model took account of the features of the drive that were considered to produce the majority of the radiation, these features being the switching of the IGBT's in the inverter, the shielded cable which connected the drive to the motor as well as some of the cables that were present in the drive.The model also took account of the structure of the test rig used to measure the radiated emissions. It was found that the majority of the radiation produced came from the shielded cable and the common mode currents that were flowing in the shield, and that it was feasible to model the radiation from the drive by only modelling the shielded cable. The radiated emissions were correctly predicted in the frequency range 30MHz to 200MHz with an error of +10dB/-6dB. The transmission line matrix method modelled the shielded cable which connected the drive to the motor and also took account of the architecture of the test rig. Only limited simulations were performed using the transmission line matrix model as it was found to be a very slow method and not an ideal solution to the problem. However the limited results obtained were comparable, to within 5%, to the results obtained using the finite element model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Finite Element Analysis (FEA) model is used to explore the relationship between clogging and hydraulics that occurs in Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) in the United Kingdom (UK). Clogging is assumed to be caused by particle transport and an existing single collector efficiency model is implemented to describe this behaviour. The flow model was validated against HSSF TW survey results obtained from the literature. The model successfully simulated the influence of overland flow on hydrodynamics, and the interaction between vertical flow through the low permeability surface layer and the horizontal flow of the saturated water table. The clogging model described the development of clogging within the system but under-predicted the extent of clogging which occurred over 15 years. This is because important clogging mechanisms were not considered by the model, such as biomass growth and vegetation establishment. The model showed the usefulness of FEA for linking hydraulic and clogging phenomenon in HSSF TWs and could be extended to include treatment processes. © 2011 Springer Science+Business Media B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiration is a complex activity. If the relationship between all neurological and skeletomuscular interactions was perfectly understood, an accurate dynamic model of the respiratory system could be developed and the interaction between different inputs and outputs could be investigated in a straightforward fashion. Unfortunately, this is not the case and does not appear to be viable at this time. In addition, the provision of appropriate sensor signals for such a model would be a considerable invasive task. Useful quantitative information with respect to respiratory performance can be gained from non-invasive monitoring of chest and abdomen motion. Currently available devices are not well suited in application for spirometric measurement for ambulatory monitoring. A sensor matrix measurement technique is investigated to identify suitable sensing elements with which to base an upper body surface measurement device that monitors respiration. This thesis is divided into two main areas of investigation; model based and geometrical based surface plethysmography. In the first instance, chapter 2 deals with an array of tactile sensors that are used as progression of existing and previously investigated volumetric measurement schemes based on models of respiration. Chapter 3 details a non-model based geometrical approach to surface (and hence volumetric) profile measurement. Later sections of the thesis concentrate upon the development of a functioning prototype sensor array. To broaden the application area the study has been conducted as it would be fore a generically configured sensor array. In experimental form the system performance on group estimation compares favourably with existing system on volumetric performance. In addition provides continuous transient measurement of respiratory motion within an acceptable accuracy using approximately 20 sensing elements. Because of the potential size and complexity of the system it is possible to deploy it as a fully mobile ambulatory monitoring device, which may be used outside of the laboratory. It provides a means by which to isolate coupled physiological functions and thus allows individual contributions to be analysed separately. Thus facilitating greater understanding of respiratory physiology and diagnostic capabilities. The outcome of the study is the basis for a three-dimensional surface contour sensing system that is suitable for respiratory function monitoring and has the prospect with future development to be incorporated into a garment based clinical tool.