43 resultados para Third-order correlation
em Aston University Research Archive
Resumo:
A novel fibre grating device is demonstrated with tuneable chromatic dispersion slope. The tuning range is 70 to 190 ps/nm and 0 to 25 ps/nm2 for the second and third order dispersion, respectively.
Resumo:
Two-tone intermodulation tests were simulated for an amplitude modulated radio-on-fibre link including fibre dispersion, nonlinearity and loss. The third-order intercept results are presented for varying fibre lengths and optical transmission powers.
Resumo:
We present a novel tunable dispersion compensator that can provide pure slope compensation. The approach uses two specially designed complex fiber Bragg gratings (FBGs) with reversely varied third-order group delay curves to generate the dispersion slope. The slope can be changed by adjusting the relative wavelength positions of the two FBGs. Several design examples of such complex gratings are presented and discussed. Experimentally, we achieve a dispersion slope tuning range of +/-650ps/nm2 with >0.9nm usable bandwidth.
Resumo:
We develop a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrodinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.
Resumo:
We present a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrödinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.
Third-order intermodulation products generated on transmission through nonlinear radio-on-fibre link
Resumo:
Two-tone intermodulation tests were simulated for an amplitude modulated radio-on-fibre link including fibre dispersion, nonlinearity and loss. The third-order intercept results are presented for varying fibre lengths and optical transmission powers.
Resumo:
We present a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrödinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.
Resumo:
This paper reviews evidence from previous growth-rate studies on lichens of the yellow-green species of Subgenus Rhizocarpon - the family most commonly used in lichenometric dating. New data are presented from Rhizocarpon section Rhizocarpon thalli growing on a moraine in southern Iceland over a period of 4.33yr. Measurements of 38 lichen thalli, between 2001 and 2005, show that diametral growth rate (DGR, mmyr-1) is a function of thallus size. Growth rates increase rapidly in small thalli (<10 mm diameter), remain high (ca. 0.8 mm yr-1) and then decrease gradually in larger thalli (>50 mm diameter). Mean DGR in southern Iceland, between 2001 and 2005, was 0.64 mm yr-1 (SD = 0.24). The resultant growth-rate curve is parabolic and is best described by a third-order polynomial function. The striking similarity between these findings in Iceland and those of Armstrong (1983) in Wales implies that the shape of the growth-rate curve may be characteristic of Rhizocarpon geographicum lichens. The difference between the absolute growth rate in southern Iceland and Wales (ca. 66% faster) is probably a function of climate and micro-environment between the two sites. These findings have implications for previous lichenometric-dating studies, namely, that those studies which assume constant lichen growth rates over many decades are probably unreliable. © British Geological Survey/ Natural Environment Research Council copyright 2006.
Resumo:
This thesis investigates the physical behaviour of solitons in wavelength division multiplexed (WDM) systems with dispersion management in a wide range of dispersion regimes. Background material is presented to show how solitons propagate in optical fibres, and key problems associated with real systems are outlined. Problems due to collision induced frequency shifts are calculated using numerical simulation, and these results compared with analytical techniques where possible. Different two-step dispersion regimes, as well as the special cases of uniform and exponentially profiled systems, are identified and investigated. In shallow profile, the constituent second-order dispersions in the system are always close to the average soliton value. It is shown that collision-induced frequency shifts in WDM soliton transmission systems are reduced with increasing dispersion management. New resonances in the collision dynamics are illustrated, due to the relative motion induced by the dispersion map. Consideration of third-order dispersion is shown to modify the effects of collision-induced timing jitter and third-order compensation investigated. In all cases pseudo-phase-matched four-wave mixing was found to be insignificant compared to collision induced frequency shift in causing deterioration of data. It is also demonstrated that all these effects are additive with that of Gordon-Haus jitter.
Resumo:
This thesis presents details on both theoretical and experimental aspects of UV written fibre gratings. The main body of the thesis deals with the design, fabrication and testing of telecommunication optical fibre grating devices, but also an accurate theoretical analysis of intra-core fibre gratings is presented. Since more than a decade, fibre gratings have been extensively used in the telecommunication field (as filters, dispersion compensators, and add/drop multiplexers for instance). Gratings for telecommunication should conform to very high fabrication standards as the presence of any imperfection raises the noise level in the transmission system compromising its ability of transmitting intelligible sequence of bits to the receiver. Strong side lobes suppression and high and sharp reflection profile are then necessary characteristics. A fundamental part of the theoretical and experimental work reported in this thesis is about apodisation. The physical principle of apodisation is introduced and a number of apodisation techniques, experimental results and numerical optimisation of the shading functions and all the practical parameters involved in the fabrication are detailed. The measurement of chromatic dispersion in fibres and FBGs is detailed and an estimation of its accuracy is given. An overview on the possible methods that can be implemented for the fabrication of tunable fibre gratings is given before detailing a new dispersion compensator device based on the action of a distributed strain onto a linearly chirped FBG. It is shown that tuning of second and third order dispersion of the grating can be obtained by the use of a specially designed multipoint bending rig. Experiments on the recompression of optical pulses travelling long distances are detailed for 10 Gb/s and 40 Gb/s. The characterisation of a new kind of double section LPG fabricated on a metal-clad coated fibre is reported. The fabrication of the device is made easier by directly writing the grating through the metal coating. This device may be used to overcome the recoating problems associated with standard LPGs written in step-index fibre. Also, it can be used as a sensor for simultaneous measurements of temperature and surrounding medium refractive index.
Resumo:
A method for inscribing fiber bragg gratings (FBG) using direct, point-by-point writing by an infrared femtosecond laser was described. The method requires neither phase-masks nor photosensitized fibers and hence offers remarkable technology flexibility. It requires a very short inscription time of less than 60 s per grating. Gratings of first to third order were produced in non-photosensitized, standard telecommunication fiber (SMF) and dispersion shifted fiber (DSF). The gratings produced in this method showed low insertion loss, narrow linewidth and strong, fundamental or high-order resonance.
Resumo:
The kinetics and mechanisms of the ring-opening polymerization of oxetane were studied using cationic and coordinated anionic catalysts. The cationic initiators used were BF30Et2!/ethanol, BF30Et2!/ethanediol and BF30Et2/propantriol. Kinetic determinations with the BF30Et2/diol system indicated that a 1: 1 BF3:0H ratio gave the maximum rate of polymerization and this ratio was employed to detenmne the overall rates of polymerization. An overall second-order dependence was obtained when the system involved ethanediol or propantriol as co-catalyst and a 3/2-order dependence with ethanol, in each case the monomer gave a first-order relationship. This suggested that two mechanisms accounted for the cationic polymerization. These mechanisms were investigated and further evidence for these was obtained from the study of the complex formation of BF30Et2 and the co-catalysts by 1H NMR. Molecular weight studies (using size-exclusion chromatography) indicated that the hydroxyl ion acted as a chain transfer reagent when the [OH] > [BF3]. A linear relationship was observed when the number average molecular weight was plotted against [oxetane] at constant [BF3:0H], and similarly a linear dependency was observed on the BF3:0H 1:1 adduct at constant oxetane concentration. Copolymerization of oxetane and THF was carried out using BF30Et2/ethanol system. The reactivity ratios were calculated as rOXT = 1.2 ± 0.30 and rTHF = 0.14 ± 0.03. These copolymers were random copolymers with no evidence of oligomer formation. The coordinated anionic catalyst, porphinato-aluminium chloride [(TPP)AICl], was used to produce a living polymerization of oxetane. An overall third-order kinetics was obtained, with a second-order with respect to the [(TPP)AICl] and a first-order with respect to the [oxetane] and a mechanism was postulated using these results. The stereochemistry of [(TPP)AlCl] catalyst was investigated using cyclohexene and cyclopentene oxide monomers, using extensive 1H NMR, 2-D COSY and decoupling NMR techniques it was concluded that [(TPP)AlCl] gave rise to stereoregular polymers.