47 resultados para Thiol
em Aston University Research Archive
Resumo:
Halide octahedral molybdenum clusters [(Mo6X8)L6]n- possess luminescence properties that are highly promising for biological applications. These properties are rather dependent on the nature of both the inner ligands X (i.e. Cl, Br, or I) and the apical organic or inorganic ligands L. Herein, the luminescence properties and the toxicity of thiol-modified polystyrene microbeads (PS-SH) doped with [(Mo6X8)(NO3)6]2- (X=Cl, Br, I) were studied and evaluated using human epidermoid larynx carcinoma (Hep2) cell cultures. According to our data, the photoluminescence quantum yield of (Mo6I8)@PS-SH is significantly higher (0.04) than that of (Mo6Cl8)@PS-SH (6Br8)@PS-SH (6X8)@PS-SH showed that all three types of doped microbeads had no significant effect on the viability and proliferation of the cells.
Resumo:
The first demonstration "polymeric ligands" for the immobilisation of quantum dots (QDs) is presented. Specifically, thiol-containing polystyrene microspheres were synthesised and used to incorporate QDs via a swelling/doping strategy. The resultant composite materials were shown to be highly stable against QD leaching in both apolar and polar solvents and retained an identical QD emission profile to non-immobilised QDs. This straightforward approach also allows easy access to controllable and reproducible multiple-QDcontaining microspheres.
Resumo:
Oxidation and S-nitrosylation of cysteinyl thiols (Cys-SH) to sulfenic (Cys-SOH), sulfinic (Cys-SO2H), sulfonic acids (Cys-SO3H), disulphides and S-nitrosothiols are suggested as important post-translational modifications that can activate or deactivate the function of many proteins. Non-enzymatic post-translational modifications to cysteinyl thiols have been implicated in a wide variety of physiological and pathophysiological states but have been difficult to monitor in a physiological setting because of a lack of experimental tools. The purpose of this review is to bring together the approaches that have been developed for stably trapping cysteine either in its reduced or oxidised forms for enrichment and or subsequent mass spectrometric analysis. These tools are providing insight into potential targets for post-translational modifications to cysteine modification in vivo. This article is part of a Special Issue entitled: Special Issue: Posttranslational Protein modifications in biology and Medicine. © 2013.
Resumo:
This review provides an overview of the biochemistry of thiol redox couples and the significance of thiol redox homeostasis in neurodegenerative disease. The discussion is centred on cysteine/cystine redox balance, the significance of the xc- cystine-glutamate exchanger and the association between protein thiol redox balance and neurodegeneration, with particular reference to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. The role of thiol disulphide oxidoreductases in providing neuroprotection is also discussed.
Resumo:
Ascorbate can act as both a reducing and oxidising agent in vitro depending on its environment. It can modulate the intracellular redox environment of cells and therefore is predicted to modulate thiol-dependent cell signalling and gene expression pathways. Using proteomic analysis of vitamin C-treated T cells in vitro, we have previously reported changes in expression of five functional protein groups associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of the signalling molecule phosphatidylinositol transfer protein (PITP) was also confirmed using Western blotting. Herein, we have compared protein changes elicited by ascorbate in vitro, with the effect of ascorbate on plasma potassium levels, on peripheral blood mononuclear cell (PBMC) apoptosis and PITP expression, in patients supplemented with vitamin C (0-2 g/d) for up to 10 weeks to investigate whether in vitro model systems are predictive of in vivo effects. PITP varied in expression widely between subjects at all time-points analysed but was increased by supplementation with 2 g ascorbate/d after 5 and 10 weeks. No effects on plasma potassium levels were observed in supplemented subjects despite a reduction of K+ channel proteins in ascorbate-treated T cells in vitro. Similarly, no effect of vitamin C supplementation on PBMC apoptosis was observed, whilst ascorbate decreased expression of caspase 3 recruitment domain protein in vitro. These data provide one of the first demonstrations that proteomics may be valuable in developing predictive markers of nutrient effects in vivo and may identify novel pathways for studying mechanisms of action in vivo.
Resumo:
A model system is presented using human umbilical vein endothelial cells (HUVECs) to investigate the role of homocysteine (Hcy) in atherosclerosis. HUVECs are shown to export Hcy at a rate determined by the flux through the methionine/Hcy pathway. Additional methionine increases intracellular methionine, decreases intracellular folate, and increases Hcy export, whereas additional folate inhibits export. An inverse relationship exists between intracellular folate and Hcy export. Hcy export may be regulated by intracellular S-adenosyl methionine rather than by Hcy. Human LDLs exposed to HUVECs exporting Hcy undergo time-related lipid oxidation, a process inhibited by the thiol trap dithionitrobenzoate. This is likely to be related to the generation of hydroxyl radicals, which we show are associated with Hcy export. Although Hcy is the major oxidant, cysteine also contributes, as shown by the effect of glutamate. Finally, the LDL oxidized in this system showed a time-dependent increase in uptake by human macrophages, implying an upregulation of the scavenger receptor. These results suggest that continuous export of Hcy from endothelial cells contributes to the generation of extracellular hydroxyl radicals, with associated oxidative modification of LDL and incorporation into macrophages, a key step in atherosclerosis. Factors that regulate intracellular Hcy metabolism modulate these effects. Copyright © 2005 by the American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Redox-sensitive cell signalling Thiol groups and the regulation of gene expression Redox-sensitive signal transduction pathways Protein kinases Protein phosphatases Lipids and phospholipases Antioxidant (electrophile) response element Intracellular calcium signalling Transcription factors NF-?B AP-1 p53 Cellular responses to oxidative stress Cellular responses to change in redox state Proliferation Cell death Immune cell function Reactive oxygen and nitrogen species – good or bad? Reactive oxygen species and cell death Reactive oxygen species and inflammation Are specific reactive oxygen species and antioxidants involved in modulating cellular responses? Specific effects of dietary antioxidants in cell regulation Carotenoids Vitamin E Flavonoids Inducers of phase II enzymes Disease states affected Oxidants, antioxidants and mitochondria Introduction Mitochondrial generation of reactive oxygen and nitrogen species Mitochondria and apoptosis Mitochondria and antioxidant defences Key role of mitochondrial GSH in the defence against oxidative damage Mitochondrial oxidative damage Direct oxidative damage to the mitochondrial electron transport chain Nitric oxide and damage to mitochondria Effects of nutrients on mitochondria Caloric restriction and antioxidants Lipids Antioxidants Techniques and approaches Mitochondrial techniques cDNA microarray approaches Proteomics approaches Transgenic mice as tools in antioxidant research Gene knockout and over expression Transgenic reporter mice Conclusions Future research needs
Resumo:
Introduction – Why do we need ‘biomarkers? Biomarkers of protein oxidation Introduction Major issues/questions Protein carbonyl biomarkers Biochemistry Methods of measurement Storage, stability and limitations in use Protein thiol biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Aliphatic amino acid biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Oxidised Tryptophan Biomarkers Biochemistry Method of measurement Storage, stability and limitations on use Oxidised tyrosine biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Formation of neoepitopes on oxidised proteins Validation of assays for protein oxidation biomarkers Relationship of protein oxidation to disease Modulation of protein oxidation biomarkers by antioxidants Future perspectives Introduction to lipid peroxidation biomarkers Introduction: biochemistry of lipid peroxidation Malondialdehyde Methods of measurement Storage, stability and limitations on use Conjugated dienes Method of measurement Storage, stability and limitations of use LDL lag phase Method of measurement Storage, stability and limitations of use Hydrocarbon gases Biochemistry Method of measurement Storage, stability and limitations on use Lipofuscin Biochemistry Method of measurement Storage, stability and limitation on use Lipid peroxides Biochemistry Method of measurement Storage, stability and limitations on use Isoprostanes Biochemistry Method of measurement Storage, stability and limitations on use Possible new biomarkers of lipid oxidation Relationship of lipid peroxidation to disease Modulation of lipid peroxidation biomarkers by antioxidants Functional consequences of lipid peroxidation Contribution of dietary intake to lipid peroxidation products Biomarkers of DNA oxidation Introduction Confounding factors Units and terminology Nuclear and mitochondrial DNA damage Lymphocytes as surrogate tissues Measurement of DNA damage with the comet assay Practical details Storage, stability, and limitations of the assay Measurement of DNA base oxidation by HPLC Practical details Storage, stability and limitations of the method Measurement of DNA base oxidation by GC–MS Biochemistry of 8-oxoguanine, adenine and fapy derivatives Methods of measurement Storage, stability and limitations of the method Analysis of guanine oxidation products in urine Method of measurement Limitations and criticisms Immunochemical methods Methods of measurement Storage, stability, and limitations of the assay 32P post-labelling Method of measurement Limitations and criticisms Validation of assays for DNA oxidation Oxo-dGuo in lymphocyte DNA Urinary measurements DNA–aldehyde adducts Biochemistry Method of measurement Products of reactive nitrogen species Endpoints arising from oxidative DNA damage Mutations Chromosome aberrations Micronuclei Site-specific DNA damage Relationship of DNA oxidation to disease Modulation of DNA oxidation biomarkers by antioxidants Direct and indirect effects of oxidative stress: measures of total oxidant/antioxidant levels Visualisation of cellular oxidants Biochemistry: histochemical detection of ROS Method of measurement Limitations, storage and stability Measurement of hydrogen peroxide Biochemistry Methods of measurement Storage, stability and limitations on use Measurement of the ratio of antioxidant/oxidised antioxidant Biochemistry Method of measurement Storage, stability and limitations on use Total antioxidant capacity Biochemistry Terminology Methods of measurement Storage, stability and limitations on use Validation of assays for direct oxidant and antioxidant biomarkers Relationship of oxidant/antioxidant measurement to disease Modulation of oxidant/antioxidant biomarkers by dietary antioxidants Induction of genes in response to oxidative stress Background Measurement of antioxidant responsive genes and proteins Effects of antioxidant intake on the activity of antioxidant enzymes
Resumo:
Reactive oxygen species are recognised as important signalling molecules within cells of the immune system. This is, at least in part, due to the reversible activation of kinases, phosphatases and transcription factors by modification of critical thiol residues. However, in the chronic inflammatory disease rheumatoid arthritis, cells of the immune system are exposed to increased levels of oxidative stress and the T cell becomes refractory to growth and death stimuli. This contributes to the perpetuation of the immune response. As many of the effective therapies used in the treatment of rheumatoid arthritis modulate intracellular redox state, this raises the question of whether increased oxidative stress is causative of T-cell hyporesponsiveness. To address this hypothesis, this review considers the putative sources of ROS involved in normal intracellular signalling in T cells and the evidence in support of abnormal ROS fluxes contributing to T-cell hyporesponsiveness. © W. S. Maney & Son Ltd.
Resumo:
Protein oxidation can be perceived as essential for the control of intracellular signalling and gene expression on the one hand, but in contrast, a potentially cytotoxic hazard of aerobic life. Reduction and oxidation of thiol groups on specific cysteine residues can act as critical molecular switches, in modulating response to growth factors, apoptotic and inflammatory stimuli to name a few. Such oxidative reactions are likely to be transient and represent low levels of oxidative modification to a protein. Sustained oxidative stress conditions through absence of essential dietary antioxidant or low activity of endogenous enzyme scavengers can cause irreversible damage and loss of function. Such modifications are believed to be important in many diseases associated with ageing. Therefore, it has been postulated that diet may exert an influence on the steady state of protein oxidation and thus offer potential health benefits through preservation of normal protein function. In the present paper, the current evidence from in vivo studies on the effects of dietary antioxidants and oxidants on protein oxidation will be evaluated, and needs for future research will be highlighted.
Resumo:
Oligo(ethylene glycol) (OEG) thiol self-assembled monolayer (SAM) decorated gold nanoparticles (AuNPs) have potential applications in bionanotechnology due to their unique property of preventing the nonspecific absorption of protein on the colloidal surface. For colloid-protein mixtures, a previous study (Zhang et al. J. Phys. Chem. A 2007, 111, 12229) has shown that the OEG SAM-coated AuNPs become unstable upon addition of proteins (BSA) above a critical concentration, c*. This has been explained as a depletion effect in the two-component system. Adding salt (NaCl) can reduce the value of c*; that is, reduce the stability of the mixture. In the present work, we study the influence of the nature of the added salt on the stability of this two-component colloid-protein system. It is shown that the addition of various salts does not change the stability of either protein or colloid in solution in the experimental conditions of this work, except that sodium sulfate can destabilize the colloidal solutions. In the binary mixtures, however, the stability of colloid-protein mixtures shows significant dependence on the nature of the salt: chaotropic salts (NaSCN, NaClO4, NaNO3, MgCl2) stabilize the system with increasing salt concentration, while kosmotropic salts (NaCl, Na2SO4, NH4Cl) lead to the aggregation of colloids with increasing salt concentration. These observations indicate that the Hofmeister effect can be enhanced in two-component systems; that is, the modification of the colloidal interface by ions changes significantly the effective depletive interaction via proteins. Real time SAXS measurements confirm in all cases that the aggregates are in an amorphous state.