27 resultados para Thin-plate spline analysis

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to investigate the integration of computer-aided drafting and finite-element analysis in a linked computer-aided design procedure and to develop the necessary software. The Be'zier surface patch for surface representation was used to bridge the gap between the rather separate fields of drafting and finite-element analysis because the surfaces are defined by analytical functions which allow systematic and controlled variation of the shape and provide continuous derivatives up to any required degree. The objectives of this research were achieved by establishing : (i) A package which interpretes the engineering drawings of plate and shell structures and prepares the Be'zier net necessary for surface representation. (ii) A general purpose stand-alone meshed-surface modelling package for surface representation of plates and shells using the Be'zier surface patch technique. (iii) A translator which adapts the geometric description of plate and shell structures as given by the meshed-surface modeller to the form needed by the finite-element analysis package. The translator was extended to suit fan impellers by taking advantage of their sectorial symmetry. The linking processes were carried out for simple test structures, simplified and actual fan impellers to verify the flexibility and usefulness of the linking technique adopted. Finite-element results for thin plate and shell structures showed excellent agreement with those obtained by other investigators while results for the simplified and actual fan impellers also showed good agreement with those obtained in an earlier investigation where finite-element analysis input data were manually prepared. Some extensions of this work have also been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research initiates a study of the mechanics of four roll plate bending and provides a methodology to investigate the process experimentally. To carry out the research a suitable model bender was designed and constructed. The model bender was comprehensively instrumented with ten load cells, three torquemeters and a tachometer. A rudimentary analysis of the four roll pre-bending mode considered the three critical bending operations. The analysis also gave an assessment of the model bender capacity for the design stage. The analysis indicated that an increase in the coefficient of friction in the contact region of the pinch rolls and the plate would reduce the pinch resultant force required to end a plate to a particular bend radius. The mechanisms involved in the four roll plate bending process were investigated and a mathematical model evolved to determine the mechanics of four roll thin plate bending. A theoretical and experimental investigation was conducted for the bending of HP30 aluminium plates in both single and multipass bending modes. The study indicated that the multipass plate bending mechanics of the process varied according to the number of bending passes executed and the step decrement of the anticipated finished bend radius in any two successive passes (i.e. the bending route). Experimental results for single pass bending indicated that the rollers normally exert a higher bending load for the steady-continous bending with the pre-inactive side roll oper?tive. For the pre-bending mode and the steady-continous bending mode with the pre-active side roll operative, the former exerted the higher loads. The single pass results also indicated that the force on the side roll, the torque and power steadily increased as the anticipated bend radius decreased. Theoretical predictions for the plate internal resistance to accomplish finished bend radii of between 2500mm and 500mm for multipass bending HP30 aluminium plates, suggested that there was a certain bending route which would effectively optimise the bender capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis and prediction of the dynamic behaviour of s7ructural components plays an important role in modern engineering design. :n this work, the so-called "mixed" finite element models based on Reissnen's variational principle are applied to the solution of free and forced vibration problems, for beam and :late structures. The mixed beam models are obtained by using elements of various shape functions ranging from simple linear to complex cubic and quadratic functions. The elements were in general capable of predicting the natural frequencies and dynamic responses with good accuracy. An isoparametric quadrilateral element with 8-nodes was developed for application to thin plate problems. The element has 32 degrees of freedom (one deflection, two bending and one twisting moment per node) which is suitable for discretization of plates with arbitrary geometry. A linear isoparametric element and two non-conforming displacement elements (4-node and 8-node quadrilateral) were extended to the solution of dynamic problems. An auto-mesh generation program was used to facilitate the preparation of input data required by the 8-node quadrilateral elements of mixed and displacement type. Numerical examples were solved using both the mixed beam and plate elements for predicting a structure's natural frequencies and dynamic response to a variety of forcing functions. The solutions were compared with the available analytical and displacement model solutions. The mixed elements developed have been found to have significant advantages over the conventional displacement elements in the solution of plate type problems. A dramatic saving in computational time is possible without any loss in solution accuracy. With beam type problems, there appears to be no significant advantages in using mixed models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The creep behaviour of three pressure diecast commercial zinc-aluminium based alloys: Mazak 3, corresponding to BS 1004A, and the new alloys ZA.8 and ZA.27 with a series of alloys with compositions ranging from 0% to 30% aluminium was investigated. The total creep elongation of commercial alloys was shown to be well correlated using an empirical equation. Based on this a parametrical relationship was derived which allowed the total creep extension to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of creep of the alloys could be made under different conditions. Deviation from the normal creep kinetics occurred in alloys ZA.8 and ZA.27 at very low stresses, 150°C, due to structural coarsening combined with partial transformation of ε -phase into T' phase. The extent of primary creep was found to increase with aluminium content, but secondary creep rates decreased in the order Mazak 3, ZA.8 and ZA.27. Thus, based on the above equation, ZA.8 was found to have a substantially better total creep resistance than ZA.27, which in turn was marginally better than Mazak 3 for strains higher than 0.5%, but inferior for smaller strains, due to its higher primary creep extension. The superior creep resistance of ZA.8 was found to be due to the presence of strictly-orientated, thin plate-like precipitates of ε(CuZn4) phase in the zinc matrix of the eutectic and the lamellarly decomposed β phase, in which the precipitation morphology and orientation of ε in the zinc matrix was determined. Over broad ranges of temperature and stresses, the stress exponents and activation energies for creep were found to be consistent with some proposed creep rate mechanisms; i.e. viscous glide for Mazak 3, dislocation climb over second phase particles for ZA.8 and dislocation climb for ZA.27, controlled by diffusion in the zinc-rich phase. The morphology of aluminium and copper-rich precipitates formed from the solid solution of zinc was clearly revealed. The former were found to further increase the creep rate of inherently low creep resistant zinc, but the latter contributed significantly to the creep resistance. Excess copper in the composition, however, was not beneficial in improving the creep resistance. Decomposition of β in copper-containing alloys was found to be through a metastable Zn-Al phase which is strongly stabilised by copper, and the final products of the decomposition had a profound effect on the creep strength of the alloys. The poor creep resistance of alloy ZA.27 was due to the presence of particulate products derived from decomposed β-phase and a large volume of fine, equiaxed products of continuously decomposed α-dendrites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distortion is one type of defect in the weld, which is troublesome for some reasons, especially in thin plate welding. Distortion was found in fibre laser welding processing for 0.7mm thickness Ti6Al4V plate. The purpose of this paper is to understand and evaluate the effect of distortion on stress level by FEA and tensile test. A group of 0.7mm Ti6Al4V plates welded using continuous wave fibre laser. FEA models were established for fibre laser welded Ti6Al4V in abaqus 6.7. © (2011) Trans Tech Publications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a highly sensitive refractive index (RI) sensor in the aqueous solution, which is based on an 81°-tilted fiber grating structure inscribed into a thin cladding fiber with 40 μm cladding radius. The numerical analysis has indicated that the RI sensitivity of cladding resonance mode of the grating can be significantly enhanced with reducing cladding size. This has been proved by the experimental results as the RI sensitivities of TM and TE resonance peaks in the index region of 1.345 have been increased to 1180 nm/RIU and 1150 nm/RIU, respectively, from only 200 and 170 nm/RIU for the same grating structure inscribed in standard telecom fiber with 62.5-μm cladding radius. Although the temperature sensitivity has also increased, the change in temperature sensitivity is still insignificant in comparison with RI sensitivity enhancement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates distortions and residual stresses induced in butt joint of thin plates using Metal Inert Gas welding. A moving distributed heat source model based on Goldak's double-ellipsoid heat flux distribution is implemented in Finite Element (FE) simulation of the welding process. Thermo-elastic-plastic FE methods are applied to modelling thermal and mechanical behaviour of the welded plate during the welding process. Prediction of temperature variations, fusion zone and heat affected zone as well as longitudinal and transverse shrinkage, angular distortion, and residual stress is obtained. FE analysis results of welding distortions are compared with existing experimental and empirical predictions. The welding speed and plate thickness are shown to have considerable effects on welding distortions and residual stresses. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The density of axons in the optic nerve, olfactory tract and corpus callosum was quantified in non-demented elderly subjects and in Alzheimer’s disease (AD) using an image analysis system. In each fibre tract, there was significant reduction in the density of axons in AD compared with non-demented subjects, the greatest reductions being observed in the olfactory tract and corpus callosum. Axonal loss in the optic nerve and olfactory tract was mainly of axons with smaller myelinated cross-sectional areas. In the corpus callosum, a reduction in the number of ‘thin’ and ‘thick’ fibres was observed in AD, but there was a proportionally greater loss of the ‘thick’ fibres. The data suggest significant degeneration of white matter fibre tracts in AD involving the smaller axons in the two sensory nerves and both large and small axons in the corpus callosum. Loss of axons in AD could reflect an associated white matter disorder and/or be secondary to neuronal degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reviews methods for quantifying the abundance of histological features in thin tissue sections of brain such as neurons, glia, blood vessels, and pathological lesions. The sampling methods by which quantitative measures can be obtained are described. In addition, methods are described for determining the spatial pattern of an object and for measuring the degree of spatial correlation between two or more histological features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical, physical and chemical changes in the surface of commercial thin film metal evaporated magnetic recording media have been correlated to recording error and signal degradation measurements. Modified and adapted commercial Hi-8 video recorders have been used for sample generation whilst analytical techniques such as SXPS,IMS and SEM have been employed in the surface characterisation. The durability of the media was assessed through stop motion (still frame) and cycling tests, where error growth and signal degradation were measured as a function of running time. The tests were performed under ambient (22°C, 40% RH) and high humidity (22°C, 80% RH) conditions. Characterisation of the lubricant layer on each tape was performed through models based on XPS and angle resolved XPS. The lubricant thickness can significantly affect the durability and signal output level of a thin film tape and thus it is important that reliable quantification can be achieved. Various models were considered for determining the lubricant thickness although ultimately, the most suitable technique was deemed to be a model that assumed a uniform layer structure. In addition to thin film metal evaporated media, equivalent durability tests and surface analysis experiments were performed using a commercial metal particle tape in order that comparisons could be made between the two types of recording media. The signal performance of the thin film metal evaporated media was found to be quite different from that for the metal particle tape since dropout errors and signal degradation increased at a much earlier stage. Extensive surface analyses enabled the mechanisms responsible for media failure and error growth to be identified in the ME and MP tapes and these were found to result from cyclic stressing and fatigue on the immediate substrate of the media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wire drive pulse echo method of measuring the spectrum of solid bodies described. Using an 's' plane representation, a general analysis of the transient response of such solids has been carried out. This was used for the study of the stepped amplitude transient of high order modes of disks and for the case where there are two adjacent resonant frequencies. The techniques developed have been applied to the measurenent of the elasticities of refractory materials at high temperatures. In the experimental study of the high order in-plane resonances of thin disks it was found that the energy travelled at the edge of the disk and this initiated the work on one dimensional Rayleigh waves.Their properties were established for the straight edge condition by following an analysis similar to that of the two dimensional case. Experiments were then carried out on the velocity dispersion of various circuits including the disk and a hole in a large plate - the negative curvature condition.Theoretical analysis established the phase and group velocities for these cases and experimental tests on aluminium and glass gave good agreement with theory. At high frequencies all velocities approach that of the one dimensional Rayleigh waves. When applied to crack detection it was observed that a signal burst travelling round a disk showed an anomalous amplitude effect. In certain cases the signal which travelled the greater distance had the greater amplitude.An experiment was designed to investigate the phenanenon and it was established that the energy travelled in two nodes with different velocities.It was found by analysis that as well as the Rayleigh surface wave on the edge, a seoond node travelling at about the shear velocity was excited and the calculated results gave reasonable agreement with the experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes the development of a proton induced X-ray emission (PIXE) analysis system, especially designed and builtfor routine quantitative multi-elemental analysis of a large number of samples. The historical and general developments of the analytical technique and the physical processes involved are discussed. The philosophy, design, constructional details and evaluation of a versatile vacuum chamber, an automatic multi-sample changer, an on-demand beam pulsing system and ion beam current monitoring facility are described.The system calibration using thin standard foils of Si, P, S,Cl, K, Ca, Ti, V, Fe, Cu, Ga, Ge, Rb, Y and Mo was undertaken at proton beam energies of 1 to 3 MeV in steps of 0.5 MeV energy and compared with theoretical calculations. An independent calibration check using bovine liver Standard Reference Material was performed.  The minimum detectable limits have been experimentally determined at detector positions of 90° and 135° with respect to the incident beam for the above range of proton energies as a function of atomic number Z. The system has detection limits of typically 10- 7 to 10- 9 g for elements 14analysis and calculations of areal density of thin foils using Rutherford backscattering data.  Amniotic fluid samples supplied by South Sefton Health Authority were successfully analysed for their low base line elemental concentrations. In conclusion the findings of this work are discussed with suggestions for further work .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis describes an investigation into the production and properties of thin amorphous C films, with and without Cr doping, as a low wear / friction coating applicable to MEMS and other micro- and nano-engineering applications. Firstly, an assessment was made of the available testing techniques. Secondly, the optimised test methods were applied to a series of sputtered films of thickness 10 - 2000 nm in order to: (i) investigate the effect of thickness on the properties of coatingslcoating process (ii) investigate fundamental tribology at the nano-scale and (iii) provide a starting point for nanotribological coating optimisation at ultra low thickness. The use of XPS was investigated for the determination of Sp3/Sp2 carbon bonding. Under C 1s peak analysis, significant errors were identified and this was attributed to the absence of sufficient instrument resolution to guide the component peak structure (even with a high resolution instrument). A simple peak width analysis and correlation work with C KLL D value confirmed the errors. The use of XPS for Sp3/Sp2 was therefore limited to initial tentative estimations. Nanoindentation was shown to provide consistent hardness and reduced modulus results with depth (to < 7nm) when replicate data was suitably statistically processed. No significant pile-up or cracking of the films was identified under nanoindentation. Nanowear experimentation by multiple nanoscratching provided some useful information, however the conditions of test were very different to those expect for MEMS and micro- / nano-engineering systems. A novel 'sample oscillated nanoindentation' system was developed for testing nanowear under more relevant conditions. The films were produced in an industrial production coating line. In order to maximise the available information and to take account of uncontrolled process variation a statistical design of experiment procedure was used to investigate the effect of four key process control parameters. Cr doping was the most significant control parameter at all thicknesses tested and produced a softening effect and thus increased nanowear. Substrate bias voltage was also a significant parameter and produced hardening and a wear reducing effect at all thicknesses tested. The use of a Cr adhesion layer produced beneficial results at 150 nm thickness, but was ineffective at 50 nm. Argon flow to the coating chamber produced a complex effect. All effects reduced significantly with reducing film thickness. Classic fretting wear was produced at low amplitude under nanowear testing. Reciprocating sliding was produced at higher amplitude which generated three body abrasive wear and this was generally consistent with the Archard model. Specific wear rates were very low (typically 10-16 - 10-18 m3N-1m-1). Wear rates reduced exponentially with reduced film thickness and below (approx.) 20 nm, thickness was identified as the most important control of wear.