5 resultados para Thermodynamic parameters

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poorly water-soluble drugs show an increase in solubility in the presence of cyclodextrins (CyD) due to the formation of a water-soluble complex between the drug and dissolved CyD. This study investigated the interactions of -Cyd and hydroxypropyl--CyD (HP--CyD, M.S. = 0.6) with antimicrobial agents of limited solubility in an attempt to increase their microbiological efficacy. The agents studied were chlorhexidine dihydrochloride (CHX), p-hydroxybenzoic acid esters (methyl, ethyl, proply and butyl) and triclosan. The interactions between the antimicrobials and CyDs were studied in solution and solid phases. Phase solubility studied revealed an enhancement in the aqueous drug solubility in the presence of the CyD and also gave an indication of the complex stability constant (Ks). The temperature-dependence of the stability constant of the complex was modelled by the van't Hoff plot which yielded the thermodynamic parameters for complexation. Further confirmation of the inclusion of the antimicrobials within the cavity of the CyDs in aqueous solution was obtained from proton magnetic resonance and ultraviolet absorption spectroscopies. The former method indicated that the chlorophenyl moiety of the CHX was included within the -CyD cavity and the stoichiometry of the complex formed was 1:1. The solid-phase complexes were prepared by freeze-drying. The inclusion complex of triclosan with HP--CyD was obtained from aqueous solution with the addition of ammonia. Evidence to confirm complex formation was obtained from DSC, IR and X-ray powder diffraction studies. Dissolution studies of the solid inclusion complexes using the dispersed powder technique illustrated their superior solubilities as compared to the equimolar physical mix of the guest and CyD. It was shown that these solutions of the complex were supersaturated with respect to the free guest. This was further demonstrated by diffusion studies which showed the flux of free drug from donor solutions of the antimicrobial-CyD complex to be significantly greater than the flux from donor suspensions of drug alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An ultra high vacuum system capable of attaining pressures of 10-12 mm Hg was used for thermal desorption experiments. The metal chosen for these experiments was tantalum because of its suitability for thermal desorption experiments and because relatively little work has been done using this metal. The gases investigated were carbon monoxide, hydrogen and ethylene. The kinetic and thermodynamic parameters relating to the desorption reaction were calculated and the values obtained related to the reaction on the surface. The thermal desorption reaction was not capable of supplying all the information necessary to form a complete picture of the desorption reaction. Further information was obtained by using a quadrupole mass spectrometer to analyse the desorbed species. The identification of the desorbed species combined with the value of the desorption parameters meant that possible adatom structures could be postulated. A combination of these two techniques proved to be a very powerful tool when investigating gas-metal surface reactions and gave realistic values for the measured parameters such as the surface coverage, order of reaction, the activation energy and pre-exponential function for desorption. Electron microscopy and X-ray diffraction were also used to investigate the effect of the gases on the metal surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigations described in this thesis concern the molecular interactions between polar solute molecules and various aromatic compounds in solution. Three different physical methods were employed. Nuclear magnetic resonance (n.m.r.) spectroscopy was used to determine the nature and strength of the interactions and the geometry of the transient complexes formed. Cryoscopic studies were used to provide information on the stoichiometry of the complexes. Dielectric constant studies were conducted in an attempt to confirm and supplement the spectroscopic investigations. The systems studied were those between nitromethane, chloroform, acetonitrile (solutes) and various methyl substituted benzenes. In the n.m.r. work the dependence of the solute chemical shift upon the compositions of the solutions was determined. From this the equilibrium quotients (K) for the formation of each complex and the shift induced in the solute proton by the aromatic in the complex were evaluated. The thermodynamic parameters for the interactions were obtained from the determination of K at several temperatures. The stoichiometries of the complexes obtained from cryoscopic studies were found to agree with those deduced from spectroscopic investigations. For most systems it is suggested that only one type of complex, of 1:1 stiochiometry, predominates except that for the acetonitrile-benzene system a 1:2 complex is formed. Two sets of dielectric studies were conducted, the first to show that the nature of the interaction is dipole-induced dipole and the second to calculate K. The equilibrium quotients obtained from spectroscopic and dielectric studies are compared. Time-averaged geometries of the complexes are proposed. The orientation of solute, with respect to the aromatic for the 1:1 complexes, appears to be the one in which the solute lies symmetrically about the aromatic six-fold axis whereas for the 1:2 complex, a sandwich structure is proposed. It is suggested that the complexes are formed through a dipole-induced dipole interaction and steric factors play some part in the complex formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The X-ray crystal structures of two related trans-N2S2 copper macrocycles are reported. One was isolated with the copper in the divalent form and the other with copper in its univalent form affording a valuable insight into the changes of geometry and metrical parameters that occur during redox processes in macrocyclic copper complexes. A variable temperature NMR study of the copper(I) complex is reported, indicative of a chair-boat conformational change within the alkyl chain backbone of the macrocycle. It was possible to extract the relevant kinetic and thermodynamic parameters (?G‡, 57.8 kJ mol-1; ?H‡, 52.1 kJ mol-1; ?S‡, -19.2 J K-1 mol-1) for this process at 298 K. DFT molecular orbital calculations were used to confirm these observations and to calculate the energy difference (26.2 kJmol-1) between the copper(I) macrocycle in a planar and a distorted tetrahedral disposition.