29 resultados para Therapeutic workshops
em Aston University Research Archive
Resumo:
The 4th International Symposium on CGRP was expertly organized, at a difficult time, by Inger Jansen-Olesen and Lars Edvinsson and held on 28-30 September 2001 at the Royal Danish School of Pharmacy, Copenhagen, Denmark.
Resumo:
Targeting of drugs and therapies locally to the esophagus is an important objective in the development of new and more effective dosage forms. Therapies that are retained within the oral cavity for both local and systemic action have been utilized for many years, although delivery to the esophagus has been far less reported. Esophageal disease states, including infections, motility disorders, gastric reflux, and cancers, would all benefit from localized drug delivery. Therefore, research in this area provides significant opportunities. The key limitation to effective drug delivery within the esophagus is sufficient retention at this site coupled with activity profiles to correspond with these retention times; therefore, a suitable formulation needs to provide the drug in a ready-to-work form at the site of action during the rapid transit through this organ. A successfully designed esophageal-targeted system can overcome these obstacles. This review presents a range of dosage form approaches for targeting the esophagus, including bioadhesive liquids and orally retained lozenges, chewing gums, gels, and films, as well as endoscopically delivered therapeutics. The techniques used to measure efficacy both in vitro and in vivo are also discussed. Drug delivery is a growing driver within the pharmaceutical industry and offers benefits both in terms of clinical efficacy, as well as in market positioning, as a means of extending a drug's exclusivity and profitability. Emerging systems that can be used to target the esophagus are reported within this review, as well as the potential of alternative formulations that offer benefits in this exciting area.
Resumo:
This paper explores how participants work in a new format of brainstorm, called an 'incubated gathering'. The paper explores brainstorm-type activities, where senior managers share occupational knowledge in the generation of a solution to a problem in which they have an embedded interest. The findings suggest that participants perceive great worth in the incubated gathering, and (compared to other formats of gathering) it allows participants to consider a significantly wider range of issues, and in more detail. They also suggest that an outcome from an incubated gathering will be informed by a more rich consideration of the pertinent issues than that from other formats of brainstorming. This paper substantiates these claims with evidence from a suite of new approaches to gauge the ability of participants to share knowledge during group brainstorming-type activities.
Resumo:
Attracting clients who are willing to invest in using a problem structuring method (PSM) can be particularly difficult for the emerging generation of modellers. There are many reasons for this, not least that the benefits of a problem structuring intervention are vague and evidence of benefits are often anecdotal for example, claims of constructing a deeper understanding of the problem or building the commitment of a group to implementing an outcome. This paper contributes to the evaluation of problem structuring methods by reflecting on the quid pro quo that a client and problem structuring modeller can enjoy from collaboration. The paper reflects on 21 cases, where Journey Making (a problem structuring method) was used with 16 organizations to help managers agree a suite of actions to tackle a complex strategic issue. The reflections are clustered around those benefits that pertain to: PSMs in general; PSMs that use computer-supported workshops; the Journey Making methodology.
Resumo:
Problem-structuring group workshops can be used in organizations as a consulting tool and as a research tool. One example of the latter is using a problem-structuring method (PSM) to help a group tackle an organizational issue; meanwhile, researchers collect the participants' initial views, discussion of divergent views, the negotiated agreement, and the reasoning for outcomes emerging. Technology can help by supporting participants in freely sharing their opinions and by logging data for post-workshop analyses. For example, computers let participants share views anonymously and without being influenced by others (as well as logging those views), and video-cameras can record discussions and intra-group dynamics. This paper evaluates whether technology-supported Journey Making workshops can be effective research tools that can capture quality research data when compared against theoretical performance benchmarks and other qualitative research tools. © 2006 Operational Research Society Ltd. All rights reserved.
Resumo:
Consistent clinical and experimental evidence points to the involvement of two enzymatic systems (the matrix metalloproteinases-MMPs and the protein crosslinking enzymes transglutaminases) in prominent physiologic roles of endothelium in the maintenance of vascular wall integrity, regulation of blood flow and clotting, and exchange of molecules and cells between the extra- and the intravascular space. These issues are briefly discussed in relation to differentiation of the endothelium within the vascular system, mechanisms of molecular regulation and the effects of their disruption in pathology. While the roles of MMPs are now understood in detail and represent a promising target for pharmacological interventions, much less is known on the roles of transglutaminases in vascular biology. These last enzymes are expressed at extremely high levels in endothelial cells and are involved in cell matrix interactions important to angiogenesis and apoptosis/cell death of endothelial cells, in the control of blood clotting and and in the transfer of molecules and cells across the vascular walls. On the clinical side, these properties are relevant in vascular inflammatory processes, atherosclerosis and tumor metastasis. We summarise the large body of evidence available in this perspective and discuss its implications for the development of new therapeutic strategies.
Resumo:
Merlin has broad tumor-suppressor functions as its mutations have been identified in multiple benign tumors and malignant cancers. In all schwannomas, the majority of meningiomas and 1/3 of ependymomas Merlin loss is causative. In neurofibromatosis type 2, a dominantly inherited tumor disease because of the loss of Merlin, patients suffer from multiple nervous system tumors and die on average around age 40. Chemotherapy is not effective and tumor localization and multiplicity make surgery and radiosurgery challenging and morbidity is often considerable. Thus, a new therapeutic approach is needed for these tumors. Using a primary human in vitro model for Merlin-deficient tumors, we report that the Ras/Raf/mitogen-activated protein, extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) scaffold, kinase suppressor of Ras 1 (KSR1), has a vital role in promoting schwannomas development. We show that KSR1 overexpression is involved in many pathological phenotypes caused by Merlin loss, namely multipolar morphology, enhanced cell-matrix adhesion, focal adhesion and, most importantly, increased proliferation and survival. Our data demonstrate that KSR1 has a wider role than MEK1/2 in the development of schwannomas because adhesion is more dependent on KSR1 than MEK1/2. Immunoprecipitation analysis reveals that KSR1 is a novel binding partner of Merlin, which suppresses KSR1's function by inhibiting the binding between KSR1 and c-Raf. Our proteomic analysis also demonstrates that KSR1 interacts with several Merlin downstream effectors, including E3 ubiquitin ligase CRL4DCAF1. Further functional studies suggests that KSR1 and DCAF1 may co-operate to regulate schwannomas formation. Taken together, these findings suggest that KSR1 serves as a potential therapeutic target for Merlin-deficient tumors.
Resumo:
The infiltration and persistence of hematopoietic immune cells within the rheumatoid arthritis (RA) joint results in elevated levels of pro-inflammatory cytokines, increased reactive oxygen (ROS) and -nitrogen (RNS) species generation, that feeds a continuous self-perpetuating cycle of inflammation and destruction. Meanwhile, the controlled production of ROS is required for signaling within the normal physiological reaction to perceived "foreign matter" and for effective apoptosis. This review focuses on the signaling pathways responsible for the induction of the normal immune response and the contribution of ROS to this process. Evidence for defects in the ability of immune cells in RA to regulate the generation of ROS and the consequence for their immune function and for RA progression is considered. As the hypercellularity of the rheumatoid joint and the associated persistence of hematopoietic cells within the rheumatoid joint are symptomatic of unresponsiveness to apoptotic stimuli, the role of apoptotic signaling proteins (specifically Bcl-2 family members and the tumor suppressor p53) as regulators of ROS generation and apoptosis are considered, evaluating evidence for their aberrant expression and function in RA. We postulate that ROS generation is required for effective therapeutic intervention.
Resumo:
Affinity purification of plasmid DNA is an attractive option for the biomanufacture of therapeutic plasmids, which are strictly controlled for levels of host protein, DNA, RNA, and endotoxin. Plasmid vectors are considered to be a safer alternative than viruses for gene therapy, but milligram quantities of DNA are required per dose. Previous affinity approaches have involved triplex DNA formation and a sequence-specific zinc finger protein. We present a more generically applicable protein-based approach, which exploits the lac operator, present in a wide diversity of plasmids, as a target sequence. We used a GFP/His-tagged Lacl protein, which is precomplexed with the plasmid, and the resulting complex was immobilized on a solid support (TALON resin). Ensuing elution gives plasmid DNA, in good yield (>80% based on recovered starting material, 35-50% overall process), free from detectable RNA and protein and with minimal genomic DNA contamination. Such an affinity-based process should enhance plasmid purity and ultimately, after appropriate development, may simplify the biomanufacturing process of therapeutic plasmids.
Resumo:
Impaired insulin action (insulin resistance) is a key factor in the pathogenesis of diabetes mellitus. To investigate therapeutic targets against insulin resistance, this thesis explores the mechanism of action of pharmacological agents and exogenous peptides known or suspected to modify insulin action. These included leptin, a hormone primarily involved in the regulation of body weight; sibutramine, an antiobesity agent; plant-derived compounds (pinitol and chamaemeloside) and agents known to affect insulin sensitivity, e.g. metformin, tolbutamide, thiazolidinediones, vanadyl sulphate and thioctic acid. Models used for investigation included the L6 skeletal muscle cell line and isolated skeletal muscles. In vivo studies were undertaken to investigate glycaemia, insulinaemia, satiety and body weight in streptozotocin-induced diabetic mice and obese (ob/ob) mice. Leptin acutely altered insulin action in skeletal muscle cells via the short form of the leptin receptor. This direct action of leptin was mediated via a pathway involving PI 3-kinase but not Jak2. The active metabolites of sibutramine had antidiabetic properties in vivo and directly improved insulin sensitivity in vitro. This effect appeared to be conducted via a non-PI 3-kinase-mediated increase in protein synthesis with facilitated glucose transport, and was independent of the serotonin and noradrenaline reuptake inhibition produced by sibutramine. Pinitol (a methyl inositol) had an insulin mimetic effect and was an effective glucose-lowering agent in insulinopenic states, acting directly on skeletal muscle. Conversely chamaemeloside appeared to improve glucose tolerance without directly altering glucose transport. Metformin directly increased basal glucose uptake independently of PI 3-kinase, possibly via an increase in the intrinsic activity of glucose transporters. Neither tolbutamide nor thiazolidinediones directly altered insulin sensitivity in L6 skeletal muscle cells: however vanadyl sulphate and thioctic acid increased glucose transport but appeared to exert toxic effects at therapeutic concentrations. Examination of glucose transport in skeletal muscle in this thesis has identified various components of post-receptor insulin signalling pathways which may be targeted to ameliorate insulin resistance. Type 2 Diabetes Mellitus Obesity L6 Skeletal Muscle Cells Glucose Transport Insulin Signalling 2
Resumo:
Alginate is widely used as a viscosity enhancer in many different pharmaceutical formulations. The aim of this thesis is to quantitatively describe the functions of this polyelectrolyte in pharmaceutical systems. To do this the techniques used were Viscometry, Light Scattering, Continuous and Oscillatory Shear Rheometry, Numerical Analysis and Diffusion. Molecular characterization of the Alginate was carried out using Viscometry and Light Scattering to determine the molecular weight, the radius of gyration, the second virial coefficient and the Kuhn statistical segment length. The results showed good agreement with similar parameters obtained in previous studies. By blending Alginate with other polyelectrolytes, Xanthan Gum and 'Carbopol', in various proportions and with various methods of low and high shear preparation, a very wide range of dynamic rheological properties was found. Using oscillatory testing, the parameters often varied over several decades of magnitude. It was shown that the determination of the viscous and elastic components is particularly useful in describing the rheological 'profiles' of suspending agent blends and provides a step towards the non-empirical formulation of pharmaceutical disperse systems. Using numerical analysis of equations describing planar diffusion, it was shown that the analysis of drug release profiles alone does not provide unambiguous information about the mechanism of rate control. These principles were applied to the diffusion of Ibuprofen in Calcium Alginate gels. For diffusion in such non-Newtonian systems, emphasis was placed on the use of the elastic as well as the viscous component of viscoelasticity. It was found that the diffusion coefficients were relatively unaffected by increases in polymer concentration up to 5 per cent, yet the elasticities measured by oscillatory shear rheometry were increased. This was interpreted in the light of several theories of diffusion in gels.
Resumo:
While the need for humanising education is pressing in neoliberal societies, the conditions for its possibility in formal institutions have become particularly cramped. A constellation of factors – the strength of neoliberal ideologies, the corporatisation of universities, the conflation of human freedom with consumer satisfaction, and a wider crisis of hope in the possibility or desirability of social change – make it difficult to apply classical theories of subject-transformation to new work in critical pedagogy. In particular, the growth of interest in pedagogies of comfort (as illustrated in certain forms of ‘therapeutic’ education and concerns about student ‘satisfaction’) and resistance to critical pedagogies suggest that subjectivty has become a primary site of political struggle in education. However, it can no longer be assumed that educators can (or should) liberate students’ repressed desires for ‘humanisation’ by politicising curricula, pedagogy or institutions. Rather, we must work to understand the new meanings and affective conditions of critical subjectivity itself. Bringing critical theories of subject transformation together with new work on ‘pedagogies of discomfort’, I suggest we can create new ways of opening up possibilities for critical education that respond to neoliberal subjectivities without corresponding to or affirming them.
Resumo:
Diabetic retinopathy (DR) remains the leading cause of blindness among working-age individuals in developed countries. Current treatments for DR are indicated in advanced stages of the disease and are associated with significant adverse effects. Therefore, new pharmacological treatments for the early stages of DR are needed. DR has been classically considered to be a microcirculatory disease of the retina. However, there is growing evidence to suggest that retinal neurodegeneration is an early event in the pathogenesis of DR, which participates in the microcirculatory abnormalities that occur in DR. Therefore, the study of the underlying mechanisms that lead to neurodegeneration will be essential for identifying new therapeutic targets. From the clinical point of view, the identification of those patients in whom retinal neurodegeneration appears will be crucial for implementing early treatment based on neuroprotective drugs. When the early stages of DR are the therapeutic target, it would be inconceivable to recommend an aggressive treatment such as intravitreous injections. By contrast, topical administration of neuroprotective drugs by using eye drops is a possible option. However, clinical trials to determine the safety and effectiveness of this non-invasive route, as well as a standardisation of the methods for monitoring neurodegeneration, are needed.