8 resultados para Theatre of the oppressed. ADHD. Formation

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithofacies distribution indicates that the Much Wenlock Limestone Formation of England and South Wales was desposited on a shelf which was flat and gently subsiding in the north, but topographically variable in the south. Limestone deposition in the north began with 12m of alga-rich limestone, which formed an upward shoaling sequence. Deepening then led to deposition of calcareous silty mudstones on the northern shelf. The remainder of the formation in this area formed during a shelf-wide regression, culminating in the production of an E to W younging sandbody. Lithofacies distribution on the southern shelf was primarily controlled by local subsidence. Six bedded lithofacies are recognised which contain 14 brachiopod/bryozoan dominated assemblages, of which 11 are in situ and three consist of reworked fossils. Microfacies analysis is necessary to distinguish assemblages which reflect original communities from those which reflect sedimentary processes. Turbulence, substrate-type, ease of feeding and other organisms in the environment controlled faunal distribution. Reefs were built dominantly by corals, stromatoporoids, algae and crinoids. Coral/stromatoporoid (Type A) reefs are common, particularly on the northern shelf, where they formed in response to shallowing, ultimately growing in front of the advancing carbonate sandbody. Algae dominate Type B and Type C reefs, reflecting growth in areas of poor water circulation. Lithification of the formation began in the marine-phreatic environment with precipitation of aragonite and high Mg calcite, which was subsequently altered to turbid low Mg calcite. Younger clear spars post-date secondary void formation. The pre-compactional clear spars have features which resemble the products of meteoric water diagenesis, but freshwater did not enter the formation at this time. The pre-compactional spars were precipitated by waters forced from the surrounding silty mudstones at shallow burial depths. Late diagenetic products are stylolites, compaction fractures and burial cements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Government regulation of industrial hazards is examined in the context of the economic and technical processes of industrial development. Technical problems and costs of control are considered as factors in both the formation and impact of regulation. This thesis focuses on an historical case-study of the regulation of the hazard to painting workers from the use of lead pigments in paint. A regulatory strategy based on the prohibition of lead paints gained initial acceptance within the British state in 1911, but was subsequently rejected in favour of a strategy that allowed continued use of lead paint subject to hygiene precautions. The development of paint technology and its determinants, including concern about health hazards, are analysed, focusing on the innovation and diffusion into the paint industry of the major white pigments: white lead (PbC03 .PB(OH)2)and its substitutes. The process of regulatory development is examined, and the protracted and polarised regulatory d~bate contrasted to the prevailing 'consensual' methods of workplace regulation. The rejection of prohibition is analysed in terms of the different political and technical resources of those groups in conflict over this policy. This highlights the problems of consensus formation around such a strategy, and demonstrates certain constraints on state regulatory activity, particularly regarding industrial development. Member-states of the International Labour Organisation agreed to introduce partial prohibition of lead paint in 1921. Whether this was implemented is related to the economic importance of lead and non-lead metal and pigment industries to a nation. An analysis is made of the control of lead poisoning. The rate of control is related to the economic and technological trajectory of the regulated industry. Technical and organisational characteristics are considered as well as regulatory factors which range from voluntary compliance and informal pressures to direct legal requirements. The implications of this case-study for the analysis of the development and impacts of regulation are assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass(A (R)) [(CaO)(26.9)(Na2O)(24.4)(SiO2)(46.1)(P2O5)(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass(A (R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass(A (R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass(A (R)) is dominated by a broad amorphous feature around 2.2 A...(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass(A (R)) in SBF a second broad amorphous feature evolves similar to 1.6 A...(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass(A (R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the effects of the composition of impregnating solution and heat treatment conditions on the activity of catalytic systems for the low-temperature oxidation of CO obtained by the impregnation of Busofit carbon-fiber cloth with aqueous solutions of palladium, copper, and iron salts. The formation of an active phase in the synthesized catalysts at different stages of their preparation was examined with the use of differential thermal and thermogravimetric analyses, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and elemental spectral analysis. The catalytic system prepared by the impregnation of electrochemically treated Busofit with the solutions of PdCl, FeCl, CuBr, and Cu(NO ) and activated under optimum conditions ensured 100% CO conversion under a respiratory regime at both low (0.03%) and high (0.5%) carbon monoxide contents of air. It was found that the activation of a catalytic system at elevated temperatures (170-180°C) leads to the conversion of Pd(II) into Pd(I), which was predominantly localized in a near-surface layer. The promoting action of copper nitrate consists in the formation of a crystalline phase of the rhombic atacamite CuCl(OH). The catalyst surface is finally formed under the conditions of a catalytic reaction, when a joint Pd(I)-Cu(I) active site is formed. © 2014 Pleiades Publishing, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphoinositides are signalling lipids that are crucial for major signalling events as well as established regulators of membrane trafficking. Control of endosomal sorting and endosomal homeostasis requires phosphatidylinositol-3-phosphate (PI(3)P) and phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2), the latter a lipid of low abundance but significant physiological relevance. PI(3,5)P2 is formed by phosphorylation of PI(3)P by the PIKfyve complex which is crucial for maintaining endosomal homeostasis. Interestingly, loss of PIKfyve function results in dramatic neurodegeneration. Despite the significance of PIKfyve, its regulation is still poorly understood. Here we show that the Amyloid Precursor Protein (APP), a central molecule in Alzheimer’s disease, associates with the PIKfyve complex (consisting of Vac14, PIKfyve and Fig4) and that the APP intracellular domain directly binds purified Vac14. We also show that the closely related APP paralogues, APLP1 and 2 associate with the PIKfyve complex. Whether APP family proteins can additionally form direct protein–protein interaction with PIKfyve or Fig4 remains to be explored. We show that APP binding to the PIKfyve complex drives formation of PI(3,5)P2 positive vesicles and that APP gene family members are required for supporting PIKfyve function. Interestingly, the PIKfyve complex is required for APP trafficking, suggesting a feedback loop in which APP, by binding to and stimulating PI(3,5)P2 vesicle formation may control its own trafficking. These data suggest that altered APP processing, as observed in Alzheimer’s disease, may disrupt PI(3,5)P2 metabolism, endosomal sorting and homeostasis with important implications for our understanding of the mechanism of neurodegeneration in Alzheimer’s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.