2 resultados para The Crucible
em Aston University Research Archive
Resumo:
The deoxidation of steel with complex deoxidisers was studied at 1550°C and compared with silicon, aluminium and silicon/aluminium alloys as standards. The deoxidation alloy systems, Ca/Si/Al, Mg/Si/Al and Mn/Si/Al, were chosen for the low liquidus temperatures of many of their oxide mixtures and the potential deoxidising power of their constituent elements. Product separation rates and compositional relationships following deoxidation were examined. Silicon/aluminium alloy deoxidation resulted in the product compositions and residual oxygen contents expected from equilibrium and stoichiometric considerations, but with the Ca/Si/Al and Mg/Si/Al alloys the volatility of calcium and magnesium prevented them participating in the final solute equilibrium, despite their reported solubility in liquid iron. Electron-probe microanalysis of the products showed various concentrations of lime and magnesia, possibly resulting from reaction between the metal vapours and dissolved oxygen.The consequent reduction of silica activity in the products due to the presence of CaO and hgO produced an indirect effect of calcium and magnesium on the residual oxygen content. Product separation rates, indicated by vacuum fusion analyses, were not significantly influenced by calcium and magnesium but the rapid separation of products having a high Al2O3Si02 ratio was confirmed. Manganese participated in deoxidation, when present either as an alloying element in the steel or as a deoxidation alloy constituent. The compositions of initial oxide products were related to deoxidation alloy compositions. Separated products which were not alumina saturated, dissolved crucible material to achieve saturation. The melt equilibrated with this slag and crucible by diffusion to determine the residual oxygen content. MnO and SiO2 activities were calculated, and the approximate values of MnO deduced for the compositions obtained. Separation rates were greater for products of high interfacial tension. The rates calculated from a model based on Stoke's Law, showed qualitative agreement with experimental data when corrected for coalescence effects.
Resumo:
The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.