13 resultados para Th2

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adjuvant efficacy of cationic liposomes composed of dimethyldioctadecylammonium bromide and trehalose dibehenate (DDA:TDB) is well established. Whilst the mechanism behind its immunostimulatory action is not fully understood, the ability of the formulation to promote a 'depot effect' is a consideration. The depot effect has been suggested to be primarily due to their cationic nature which results in electrostatic adsorption of the antigen and aggregation of the vesicles at the site of injection. The aim of the study was to further test this hypothesis by investigating whether sterically stabilising DDA:TDB with polyethylene glycol (PEG) reduces aggregation, and subsequently influences the formation of a depot at the site of injection. Results reported demonstrate that high (25%) levels of PEG was able to significantly inhibit the formation of a liposome depot and also severely limit the retention of antigen at the site, resulting in a faster drainage of the liposomes from the site of injection. This change in biodistribution profile was reflected in the immunisation response, where lower levels of IgG2b antibody and IFN-? and higher level of IL-5 cytokine were found. Furthermore entrapping antigen within DDA:TDB liposomes did not improve antigen retention at the injection site compared surface adsorbed antigen. © 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. Methods MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-? and tumor necrosis factor-a) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-? and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia. Results LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-?-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. Conclusion The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With respect to liposomes as delivery vehicles and adjuvants for vaccine antigens, the role of vesicle surface charge remains disputed. In the present study we investigate the influence of liposome surface charge and antigen-liposome interaction on the antigen depot effect at the site of injection (SOI). The presence of liposome and antigen in tissue at the SOI as well as the draining lymphatic tissue was quantified to analyse the lymphatic draining of the vaccine components. Furthermore investigations detailing cytokine production and T-cell antigen specificity were undertaken to investigate the relationship between depot effect and the ability of the vaccine to induce an immune response. Our results suggest that cationic charge is an important factor for the retention of the liposomal component at the SOI, and a moderate to high (>50%) level of antigen adsorption to the cationic vesicle surface was required for efficient antigen retention in the same tissue. Furthermore, neutral liposomes expressing poor levels of antigen retention were limited in their ability to mediate long term (14 days) antigen presentation to circulating antigen specific T-cells and to induce the Th1 and Th17 arms of the immune system, as compared to antigen adsorbing cationic liposomes. The neutral liposomes did however induce the production of IL-5 at levels comparable to those induced by cationic liposomes, indicating that neutral liposomes can induce a weak Th2 response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate delivery systems such as liposomes and polymeric nano- and microparticles are attracting great interest for developing new vaccines. Materials and formulation properties essential for this purpose have been extensively studied, but relatively little is known about the influence of the administration route of such delivery systems on the type and strength of immune response elicited. Thus, the present study aimed at elucidating the influence on the immune response when of immunising mice by different routes, such as the subcutaneous, intradermal, intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl chitosan (TMC) nanoparticles, and poly(lactide-co-glycolide) (PLGA) microparticles, all with and without specifically selected immune-response modifiers. The results showed that the route of administration caused only minor differences in inducing an antibody response of the IgG1 subclass, and any such differences were abolished upon booster immunisation with the various adjuvanted and non-adjuvanted delivery systems. In contrast, the administration route strongly affected both the kinetics and magnitude of the IgG2a response. A single intralymphatic administration of all evaluated delivery systems induced a robust IgG2a response, whereas subcutaneous administration failed to elicit a substantial IgG2a response even after boosting, except with the adjuvanted nanoparticles. The intradermal and intramuscular routes generated intermediate IgG2a titers. The benefit of the intralymphatic administration route for eliciting a Th1-type response was confirmed in terms of IFN-gamma production of isolated and re-stimulated splenocytes from animals previously immunised with adjuvanted and non-adjuvanted liposomes as well as with adjuvanted microparticles. Altogether the results show that the IgG2a associated with Th1-type immune responses are sensitive to the route of administration, whereas IgG1 response associated with Th2-type immune responses were relatively insensitive to the administration route of the particulate delivery systems. The route of administration should therefore be considered when planning and interpreting pre-clinical research or development on vaccine delivery systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The requirement of adjuvants in subunit protein vaccination is well known yet their mechanisms of action remain elusive. Of the numerous mechanisms suggested, cationic liposomes appear to fulfil at least three: the antigen depot effect, the delivery of antigen to antigen presenting cells (APCs) and finally the danger signal. We have investigated the role of antigen depot effect with the use of dual radiolabelling whereby adjuvant and antigen presence in tissues can be quantified. In our studies a range of cationic liposomes and different antigens were studied to determine the importance of physical properties such as liposome surface charge, antigen association and inherent lipid immunogenicity. More recently we have investigated the role of liposome size with the cationic liposome formulation DDA:TDB, composed of the cationic lipid dimethyldioctadecylammonium (DDA) and the synthetic mycobacterial glycolipid trehalose 6,6’-dibehenate (TDB). Vesicle size is a frequently investigated parameter which is known to result in different routes of endocytosis. It has been postulated that targeting different routes leads to different intracellular signaling pathway activation and it is certainly true that numerous studies have shown vesicle size to have an effect on the resulting immune responses (e.g. Th1 vs. Th2). Aim: To determine the effect of cationic liposome size on the biodistribution of adjuvant and antigen, the ensuing humoral and cell-mediated immune responses and the uptake and activation of antigen by APCs including macrophages and dendritic cells. Methods: DDA:TDB liposomes were made to three different sizes (~ 0.2, 0.5 and 2 µm) followed by the addition of tuberculosis antigen Ag85B-ESAT-6 therefore resulting in surface adsorption. Liposome formulations were injected into Balb/c or C57Bl/6 mice via the intramuscular route. The biodistribution of the liposome formulations was followed using dual radiolabelling. Tissues including muscle from the site of injection and local draining lymph nodes were removed and liposome and antigen presence quantified. Mice were also immunized with the different vaccine formulations and cytokine production (from Ag85B-ESAT-6 restimulated splenocytes) and antibody presence in blood assayed. Furthermore, splenocyte proliferation after restimulating with Ag85B-ESAT-6 was measured. Finally, APCs were compared for their ability to endocytose vaccine formulations and the effect this had on the maturation status of the cell populations was compared. Flow cytometry and fluorescence labelling was used to investigate maturation marker up-regulation and efficacy of phagocytosis. Results: Our results show that for an efficient Ag85B-ESAT-6 antigen depot at the injection site, liposomes composed of DDA and TDB are required. There is no significant change in the presence of liposome or antigen at 6hrs or 24hrs p.i, nor does liposome size have an effect. Approximately 0.05% of the injected liposome dose is detected in the local draining lymph node 24hrs p.i however protein presence is low (<0.005% dose). Preliminary in vitro data shows liposome and antigen endocytosis by macrophages; further studies on this will be presented in addition to the results of the immunisation study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) incorporating the glycolipid trehalose 6,6-dibehenate (TDB) forms a promising liposomal vaccine adjuvant. To be exploited as effective subunit vaccine delivery systems, the physicochemical characteristics of liposomes were studied in detail and correlated with their effectiveness in vivo, in an attempt to elucidate key aspects controlling their efficacy. This research took the previously optimised DDA-TDB system as a foundation for a range of formulations incorporating additional lipids of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), by incrementally replacing the cationic content within DDA-TDB or reducing the total DDA-TDB dose upon its substitution, to ascertain the role of DDA and the effect of DDA-TDB concentration in influencing the resultant immunological performance upon delivery of the novel subunit TB vaccine, Ag85B–ESAT-6-Rv2660c (H56 vaccine). With the aim of using the DPPC based systems for pulmonary vaccine delivery and the DSPC systems for application via the intramuscular route, initial work focused on physicochemical characterisation of the systems with incorporation of DPPC or DSPC displaying comparable physical stability, morphological structure and levels of antigen retention to that of DDA-TDB. Thermodynamic analysis was also conducted to detect main phase transition temperatures and subsequent in vitro cell culture studies demonstrated a favourable reduction in cytotoxicity, stimulation of phagocytic activity and macrophage activation in response to the proposed liposomal immunoadjuvants. Immunisation of mice with H56 vaccine via the proposed liposomal adjuvants showed that DDA was an important factor in mediating resultant immune responses, with partial replacement or substitution of DDA-TDB stimulating Th1 type cellular immunity characterised by elevated levels of IgG2b antibodies and IFN-? and IL-2 cytokines, essential for providing protective efficacy against TB. Upon increased DSPC content within the formulation, either by DDA replacement or reduction of DDA and TDB, responses were skewed towards Th2 type immunity with reduced IgG2b antibody levels and elevated IL-5 and IL-10 cytokine production, as resultant immunological responses were independent of liposomal zeta potential. The role of the cationic DDA lipid and the effect of DDA-TDB concentration were appreciated as the proposed liposomal formulations elicited antigen specific antibody and cellular immune responses, demonstrating the potential of cationic liposomes to be utilised as adjuvants for subunit vaccine delivery. Furthermore, the promising capability of the novel H56 vaccine candidate in eliciting protection against TB was apparent in a mouse model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism behind the immunostimulatory effect of the cationic liposomal vaccine adjuvant dimethyldioctadecylammonium and trehalose 6,6′- dibehenate (DDA:TDB) has been linked to the ability of these cationic vesicles to promote a depot after administration, with the liposomal adjuvant and the antigen both being retained at the injection site. This can be attributed to their cationic nature, since reduction in vesicle size does not influence their distribution profile yet neutral or anionic liposomes have more rapid clearance rates. Therefore the aim of this study was to investigate the impact of a combination of reduced vesicle size and surface pegylation on the biodistribution and adjuvanticity of the formulations, in a bid to further manipulate the pharmacokinetic profiles of these adjuvants. From the biodistribution studies, it was found that with small unilamellar vesicles (SUVs), 10% PEGylation of the formulation could influence liposome retention at the injection site after 4 days, whilst higher levels (25 mol%) of PEG blocked the formation of a depot and promote clearance to the draining lymph nodes. Interestingly, whilst the use of 10% PEG in the small unilamellar vesicles did not block the formation of a depot at the site of injection, it did result in earlier antibody response rates and switch the type of T cell responses from a Th1 to a Th2 bias suggesting that the presence of PEG in the formulation not only control the biodistribution of the vaccine, but also results in different types of interactions with innate immune cells. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adjuvants are substances that enhance immune responses and thus improve the efficacy of vaccination. Few adjuvants are available for use in humans, and the one that is most commonly used (alum) often induces suboptimal immunity for protection against many pathogens. There is thus an obvious need to develop new and improved adjuvants. We have therefore taken an approach to adjuvant discovery that uses in silico modeling and structure-based drug-design. As proof-of-principle we chose to target the interaction of the chemokines CCL22 and CCL17 with their receptor CCR4. CCR4 was posited as an adjuvant target based on its expression on CD4(+)CD25(+) regulatory T cells (Tregs), which negatively regulate immune responses induced by dendritic cells (DC), whereas CCL17 and CCL22 are chemotactic agents produced by DC, which are crucial in promoting contact between DC and CCR4(+) T cells. Molecules identified by virtual screening and molecular docking as CCR4 antagonists were able to block CCL22- and CCL17-mediated recruitment of human Tregs and Th2 cells. Furthermore, CCR4 antagonists enhanced DC-mediated human CD4(+) T cell proliferation in an in vitro immune response model and amplified cellular and humoral immune responses in vivo in experimental models when injected in combination with either Modified Vaccinia Ankara expressing Ag85A from Mycobacterium tuberculosis (MVA85A) or recombinant hepatitis B virus surface antigen (rHBsAg) vaccines. The significant adjuvant activity observed provides good evidence supporting our hypothesis that CCR4 is a viable target for rational adjuvant design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liposomes offer an ideal platform for the delivery of subunit vaccines, due to their versatility and flexibility, which allows for antigen as well as immunostimulatory lipids and TLR agonists to become associated with these bilayered vesicles. Liposomes have the ability to protect vaccine antigen, as well as enhance delivery to antigen presenting cells, whilst the importance of cationic surface charge for delivery of TB subunit vaccines and formation of an ‘antigen depot’ may play a key role in boosting cell-mediated immunity and Th1 immune responses. The rational design of vaccine adjuvants requires the thorough investigation into the physicochemical characteristics that dictate the function of a liposomal adjuvant. Within this thesis, physicochemical characteristics were investigated in order to show any effects on the biodistribution profiles and the ensuing immune responses of these formulations. Initially the role of liposome charge within the formulation was investigated and subsequently their efficacy as vaccine adjuvants in combination with their biodistribution was measured to allow the role of formulation in vaccine function to be considered. These results showed that cationic surface charge, in combination with high loading of H56 vaccine antigen through electrostatic binding, was crucial in the promotion of the ‘depot-effect’ at the injection site which increases the initiation of Th1 cell-mediated immune responses that are required to offer protection against tuberculosis. To further investigate this, different methods of liposome production were also investigated where antigen incorporation within the vesicles as well as surface adsorption were adopted. Using the dehydration-rehydration (DRV) method (where liposomes are freeze-dried in the presence of antigen to promote antigen encapsulation) and the double emulsion (DE) method, a range of liposomes entrapping antigen were formulated. Variation in the liposome preparation method can lead to antigen entrapment within the delivery system which has been shown to be greater for DRV-formulated liposomes compared to their DE-counterparts. This resulted in no significant effect on the vaccine biodistribution profile, as well as not significantly altering the efficacy of cationic liposomal adjuvants. To further enhance the efficacy of these systems, the addition of TLR agonists either at the vesicle surface as well as within the delivery system has been displayed through variation in the preparation method. Anionic liposomal adjuvants have been formulated, which displayed rapid drainage from the injection site to the draining lymph nodes and displayed a reduction in measured Th1 immune responses. However, variation in the preparation method can alter the immune response profile for anionic liposomal adjuvants with a bias in immune response to Th2 responses being noted. Through the use of high shear mixing and stepwise incorporation, the efficient loading of TLR agonist within liposomes has been shown. However, interestingly the conjugation between lipid and non-electrostatically bound TLR agonist, followed by insertion into the bilayer of DDA/TDB resulted in localised agonist retention at the injection site and further stimulation of the Th1 immune response at the SOI, spleen and draining lymphatics as well as enhanced antibody titres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of particulate delivery systems have been considered as vaccine adjuvants. Of these systems, liposomes offer a range of advantages including versatility and flexibility in design format and their ability to incorporate a range of immunomodulators and antigens. Here we briefly outline research, from within our laboratories, which focused on the systematic evaluation of cationic liposomes as vaccines adjuvants. Our aim was to identify physicochemical characteristics that correlate with vaccine efficacy, with particular consideration of the interlink between depot-forming action and immune responses. A variety of parameters were investigated and over a range of studies we have confirmed that cationic liposomes, based on dimethyldioctadecylammonium bromide and trehalose 6,6'-dibehenate formed a depot at the injection site, which stimulates recruitment of antigen presenting cells to the injection site and promotes strong humoral and cell-mediated immune responses. Physicochemical factors which promote a strong vaccine depot include the combination of a high cationic charge and electrostatic binding of the antigen to the liposome system and the use of lipids with high transition temperatures, which form rigid bilayer vesicles. Reduction in vesicle size of cationic vesicles did not promote enhanced drainage from the injection site. However, reducing the cationic nature through substitution of the cationic lipid for a neutral lipid, or by masking of the charge using PEGylation, resulted in a reduced depot formation and reduced Th1-type immune responses, while Th2-type responses were less influenced. These studies confirm that the physicochemical characteristics of particulate-based adjuvants play a key role in the modulation of immune responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The aim of the present study was to investigate if somatoform disorders (SFD) are associated with changes in the normal serum levels of important interleukins, and further, to establish if these changes are related to the presence and severity of alexithymia in patients with SFD. Methods: Twenty-four unmedicated patients who met the International Classification of Diseases (ICD-10) diagnostic criteria for SFD completed the psychological questionnaire to assess alexithymia (Toronto Alexithymia Scale), symptom reporting (SCL-90-R) and diagnostic criteria for SFD (Screening for Somatoform Symptoms scale). Serum concentrations of soluble interleukin 2 receptor α (sIL-2 Rα), IL-4, IL-6, IL-10 and IL-12 were determined in patients with SFD and in 9 healthy subjects. Results: In patients with SFD, serum levels of IL-6 (p < 0.001), IL-10 (p = 0.047) and immunoglobulin E (p = 0.045) were significantly increased in comparison with healthy controls. Additionally, a negative correlation was observed between the level of alexithymia ('total' Toronto Alexithymia Scale score) and the serum levels of sIL-2 Rα (r = -0.538) in SFD. Conclusions: Taken together, these results suggest that SFD, with clinically significant alexithymia, are associated with a reduction in Th1-mediated immune function and an increase in the activation of the Th2 immune function, indicated by the augmented serum levels of IL-6 and IL-10 and elevated immunoglobulin E. Copyright © 2007 S. Karger AG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. MR16-1 antibodies versus isotype control antibodies or saline alone was administered immediately after thoracic SCI in mice. MR16-1-treated group samples showed increased neuronal regeneration and locomotor recovery compared with controls. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. MR16-1 treatment promoted arginase-1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site and enhanced positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.