11 resultados para Text Mining

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

To date, more than 16 million citations of published articles in biomedical domain are available in the MEDLINE database. These articles describe the new discoveries which accompany a tremendous development in biomedicine during the last decade. It is crucial for biomedical researchers to retrieve and mine some specific knowledge from the huge quantity of published articles with high efficiency. Researchers have been engaged in the development of text mining tools to find knowledge such as protein-protein interactions, which are most relevant and useful for specific analysis tasks. This chapter provides a road map to the various information extraction methods in biomedical domain, such as protein name recognition and discovery of protein-protein interactions. Disciplines involved in analyzing and processing unstructured-text are summarized. Current work in biomedical information extracting is categorized. Challenges in the field are also presented and possible solutions are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature. We have constructed an information extraction system based on the Hidden Vector State (HVS) model for protein-protein interactions. The HVS model can be trained using only lightly annotated data whilst simultaneously retaining sufficient ability to capture the hierarchical structure. When applied in extracting protein-protein interactions, we found that it performed better than other established statistical methods and achieved 61.5% in F-score with balanced recall and precision values. Moreover, the statistical nature of the pure data-driven HVS model makes it intrinsically robust and it can be easily adapted to other domains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the last decade, biomedicine has witnessed a tremendous development. Large amounts of experimental and computational biomedical data have been generated along with new discoveries, which are accompanied by an exponential increase in the number of biomedical publications describing these discoveries. In the meantime, there has been a great interest with scientific communities in text mining tools to find knowledge such as protein-protein interactions, which is most relevant and useful for specific analysis tasks. This paper provides a outline of the various information extraction methods in biomedical domain, especially for discovery of protein-protein interactions. It surveys methodologies involved in plain texts analyzing and processing, categorizes current work in biomedical information extraction, and provides examples of these methods. Challenges in the field are also presented and possible solutions are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discovering who works with whom, on which projects and with which customers is a key task in knowledge management. Although most organizations keep models of organizational structures, these models do not necessarily accurately reflect the reality on the ground. In this paper we present a text mining method called CORDER which first recognizes named entities (NEs) of various types from Web pages, and then discovers relations from a target NE to other NEs which co-occur with it. We evaluated the method on our departmental Website. We used the CORDER method to first find related NEs of four types (organizations, people, projects, and research areas) from Web pages on the Website and then rank them according to their co-occurrence with each of the people in our department. 20 representative people were selected and each of them was presented with ranked lists of each type of NE. Each person specified whether these NEs were related to him/her and changed or confirmed their rankings. Our results indicate that the method can find the NEs with which these people are closely related and provide accurate rankings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effectively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex relationships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Timeline generation is an important research task which can help users to have a quick understanding of the overall evolution of any given topic. It thus attracts much attention from research communities in recent years. Nevertheless, existing work on timeline generation often ignores an important factor, the attention attracted to topics of interest (hereafter termed "social attention"). Without taking into consideration social attention, the generated timelines may not reflect users' collective interests. In this paper, we study how to incorporate social attention in the generation of timeline summaries. In particular, for a given topic, we capture social attention by learning users' collective interests in the form of word distributions from Twitter, which are subsequently incorporated into a unified framework for timeline summary generation. We construct four evaluation sets over six diverse topics. We demonstrate that our proposed approach is able to generate both informative and interesting timelines. Our work sheds light on the feasibility of incorporating social attention into traditional text mining tasks. Copyright © 2013 ACM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Learning user interests from online social networks helps to better understand user behaviors and provides useful guidance to design user-centric applications. Apart from analyzing users' online content, it is also important to consider users' social connections in the social Web. Graph regularization methods have been widely used in various text mining tasks, which can leverage the graph structure information extracted from data. Previously, graph regularization methods operate under the cluster assumption that nearby nodes are more similar and nodes on the same structure (typically referred to as a cluster or a manifold) are likely to be similar. We argue that learning user interests from complex, sparse, and dynamic social networks should be based on the link structure assumption under which node similarities are evaluated based on the local link structures instead of explicit links between two nodes. We propose a regularization framework based on the relation bipartite graph, which can be constructed from any type of relations. Using Twitter as our case study, we evaluate our proposed framework from social networks built from retweet relations. Both quantitative and qualitative experiments show that our proposed method outperforms a few competitive baselines in learning user interests over a set of predefined topics. It also gives superior results compared to the baselines on retweet prediction and topical authority identification. © 2014 ACM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included. © 2010 The authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework called joint sentiment-topic (JST) model based on latent Dirichlet allocation (LDA), which detects sentiment and topic simultaneously from text. A reparameterized version of the JST model called Reverse-JST, obtained by reversing the sequence of sentiment and topic generation in the modeling process, is also studied. Although JST is equivalent to Reverse-JST without a hierarchical prior, extensive experiments show that when sentiment priors are added, JST performs consistently better than Reverse-JST. Besides, unlike supervised approaches to sentiment classification which often fail to produce satisfactory performance when shifting to other domains, the weakly supervised nature of JST makes it highly portable to other domains. This is verified by the experimental results on data sets from five different domains where the JST model even outperforms existing semi-supervised approaches in some of the data sets despite using no labeled documents. Moreover, the topics and topic sentiment detected by JST are indeed coherent and informative. We hypothesize that the JST model can readily meet the demand of large-scale sentiment analysis from the web in an open-ended fashion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present in this article an automated framework that extracts product adopter information from online reviews and incorporates the extracted information into feature-based matrix factorization formore effective product recommendation. In specific, we propose a bootstrapping approach for the extraction of product adopters from review text and categorize them into a number of different demographic categories. The aggregated demographic information of many product adopters can be used to characterize both products and users in the form of distributions over different demographic categories. We further propose a graphbased method to iteratively update user- and product-related distributions more reliably in a heterogeneous user-product graph and incorporate them as features into the matrix factorization approach for product recommendation. Our experimental results on a large dataset crawled from JINGDONG, the largest B2C e-commerce website in China, show that our proposed framework outperforms a number of competitive baselines for product recommendation.