4 resultados para Test content
em Aston University Research Archive
Resumo:
Evaluation and benchmarking in content-based image retrieval has always been a somewhat neglected research area, making it difficult to judge the efficacy of many presented approaches. In this paper we investigate the issue of benchmarking for colour-based image retrieval systems, which enable users to retrieve images from a database based on lowlevel colour content alone. We argue that current image retrieval evaluation methods are not suited to benchmarking colour-based image retrieval systems, due in main to not allowing users to reflect upon the suitability of retrieved images within the context of a creative project and their reliance on highly subjective ground-truths. As a solution to these issues, the research presented here introduces the Mosaic Test for evaluating colour-based image retrieval systems, in which test-users are asked to create an image mosaic of a predetermined target image, using the colour-based image retrieval system that is being evaluated. We report on our findings from a user study which suggests that the Mosaic Test overcomes the major drawbacks associated with existing image retrieval evaluation methods, by enabling users to reflect upon image selections and automatically measuring image relevance in a way that correlates with the perception of many human assessors. We therefore propose that the Mosaic Test be adopted as a standardised benchmark for evaluating and comparing colour-based image retrieval systems.
Resumo:
A variety of content-based image retrieval systems exist which enable users to perform image retrieval based on colour content - i.e., colour-based image retrieval. For the production of media for use in television and film, colour-based image retrieval is useful for retrieving specifically coloured animations, graphics or videos from large databases (by comparing user queries to the colour content of extracted key frames). It is also useful to graphic artists creating realistic computer-generated imagery (CGI). Unfortunately, current methods for evaluating colour-based image retrieval systems have 2 major drawbacks. Firstly, the relevance of images retrieved during the task cannot be measured reliably. Secondly, existing methods do not account for the creative design activity known as reflection-in-action. Consequently, the development and application of novel and potentially more effective colour-based image retrieval approaches, better supporting the large number of users creating media for use in television and film productions, is not possible as their efficacy cannot be reliably measured and compared to existing technologies. As a solution to the problem, this paper introduces the Mosaic Test. The Mosaic Test is a user-based evaluation approach in which participants complete an image mosaic of a predetermined target image, using the colour-based image retrieval system that is being evaluated. In this paper, we introduce the Mosaic Test and report on a user evaluation. The findings of the study reveal that the Mosaic Test overcomes the 2 major drawbacks associated with existing evaluation methods and does not require expert participants. © 2012 Springer Science+Business Media, LLC.
Resumo:
Dissimilarity measurement plays a crucial role in content-based image retrieval, where data objects and queries are represented as vectors in high-dimensional content feature spaces. Given the large number of dissimilarity measures that exist in many fields, a crucial research question arises: Is there a dependency, if yes, what is the dependency, of a dissimilarity measure’s retrieval performance, on different feature spaces? In this paper, we summarize fourteen core dissimilarity measures and classify them into three categories. A systematic performance comparison is carried out to test the effectiveness of these dissimilarity measures with six different feature spaces and some of their combinations on the Corel image collection. From our experimental results, we have drawn a number of observations and insights on dissimilarity measurement in content-based image retrieval, which will lay a foundation for developing more effective image search technologies.
Resumo:
In this paper we propose a hybrid TCP/UDP transport, specifically for H.264/AVC encoded video, as a compromise between the delay-prone TCP and the loss-prone UDP. When implementing the hybrid approach, we argue that the playback at the receiver often need not be 100% perfect, provided that a certain level of quality is assured. Reliable TCP is used to transmit and guarantee delivery of the most important packets. This allows use of additional features in the H.264/AVC standard which simultaneously provide an enhanced playback quality, in addition to a reduction in throughput. These benefits are demonstrated through experimental results using a test-bed to emulate the hybrid proposal. We compare the proposed system with other protection methods, such as FEC, and in one case show that for the same bandwidth overhead, FEC is unable to match the performance of the hybrid system in terms of playback quality. Furthermore, we measure the delay associated with our approach, and examine its potential for use as an alternative to the conventional methods of transporting video by either TCP or UDP alone. © 2011 IEEE.