3 resultados para Test à base de modèle
em Aston University Research Archive
Resumo:
The object of this work was to further develop the idea introduced by Muaddi et al (1981) which enables some of the disadvantages of earlier destructive adhesion test methods to be overcome. The test is non-destructive in nature but it does need to be calibrated against a destructive method. Adhesion is determined by measuring the effect of plating on internal friction. This is achieved by determining the damping of vibrations of a resonating specimen before and after plating. The level of adhesion was considered by the above authors to influence the degree of damping. In the major portion of the research work the electrodeposited metal was Watt's nickel, which is ductile in nature and is therefore suitable for peel adhesion testing. The base metals chosen were aluminium alloys S1C and HE9 as it is relatively easy to produce varying levels of adhesion between the substrate and electrodeposited coating by choosing the appropriate process sequence. S1C alloy is the commercially pure aluminium and was used to produce good adhesion. HE9 aluminium alloy is a more difficult to plate alloy and was chosen to produce poorer adhesion. The "Modal Testing" method used for studying vibrations was investigated as a possible means of evaluating adhesion but was not successful and so research was concentrated on the "Q" meter. The method based on the use of a "Q" meter involves the principle of exciting vibrations in a sample, interrupting the driving signal and counting the number of oscillations of the freely decaying vibrations between two known preselected amplitudes of oscillations. It was not possible to reconstruct a working instrument using Muaddi's thesis (1982) as it had either a serious error or the information was incomplete. Hence a modified "Q" meter had to be designed and constructed but it was then difficult to resonate non-magnetic materials, such as aluminium, therefore, a comparison before and after plating could not be made. A new "Q" meter was then developed based on an Impulse Technique. A regulated miniature hammer was used to excite the test piece at the fundamental mode instead of an electronic hammer and test pieces were supported at the two predetermined nodal points using nylon threads. This instrument developed was not very successful at detecting changes due to good and poor pretreatments given before plating, however, it was more sensitive to changes at the surface such as room temperature oxidation. Statistical analysis of test results from untreated aluminium alloys show that the instrument is not always consistent, the variation was even bigger when readings were taken on different days. Although aluminium is said to form protective oxides at room temperature there was evidence that the aluminium surface changes continuously due to film formation, growth and breakdown. Nickel plated and zinc alloy immersion coated samples also showed variation in Q with time. In order to prove that the variations in Q were mainly due to surface oxidation, aluminium samples were lacquered and anodised Such treatments enveloped the active surfaces reacting with the environment and the Q variation with time was almost eliminated especially after hard anodising. This instrument detected major differences between different untreated aluminium substrates.Also Q values decreased progressively as coating thicknesses were increased. This instrument was also able to detect changes in Q due to heat-treatment of aluminium alloys.
Resumo:
In the temperature range 200-400 degree C the Ni-base superalloy, N901, develops marked dynamic strain ageing effects in its tensile behavior. These include inverse strain rate sensitivity, especially in UTS values, strongly serrated stress-strain curves and a heavily sheared failure mode at the higher test-temperatures. As for steels these effects seem to be due to interactions between the dislocations and the interstitial carbon atoms present. The results of tensile and fatigue threshold tests carried out between 20 degree C and 420 degree C are reported and the fatigue behavior is discussed in terms of the effects of surface roughness induced closure, temperature and strain aging interactions.
Resumo:
A new creep test, Partial Triaxial Test (PTT), was developed to study the permanent deformation properties of asphalt mixtures. The PTT used two duplicate platens whose diameters were smaller than the diameter of the cylindrical asphalt mixtures specimen. One base platen was centrally placed under the specimen and another loading platen was centrally placed on the top surface of the specimen. Then the compressive repeated load was applied on the loading platen and the vertical deformation of the asphalt mixture was recorded in the PTTs. Triaxial repeated load permanent deformation tests (TRT) and PTTs were respectively conducted on AC20 and SMA13 asphalt mixtures at 40°C and 60°C so as to provide the parameters of the creep constitutive relations in the ABAQUS finite element models (FEMs) which were built to simulate the laboratory wheel tracking tests. The real laboratory wheel tracking tests were also conducted on AC20 and SMA13 asphalt mixtures at 40°C and 60°C. Then the calculated rutting depth from the FEMs were compared with the measured rutting depth of the laboratory wheeling tracking tests. Results indicated that PTT was able to characterize the permanent deformation of the asphalt mixtures in laboratory. The rutting depth calculated using the parameters estimated from PTTs' results was closer to and showed better matches with the measured rutting than the rutting depth calculated using the parameters estimated from TRTs' results. Main reason was that PTT could better simulate the changing confinement conditions of asphalt mixtures in the laboratory wheeling tracking tests than the TRT.