4 resultados para Television display systems

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis addresses the viability of automatic speech recognition for control room systems; with careful system design, automatic speech recognition (ASR) devices can be useful means for human computer interaction in specific types of task. These tasks can be defined as complex verbal activities, such as command and control, and can be paired with spatial tasks, such as monitoring, without detriment. It is suggested that ASR use be confined to routine plant operation, as opposed the critical incidents, due to possible problems of stress on the operators' speech.  It is proposed that using ASR will require operators to adapt a commonly used skill to cater for a novel use of speech. Before using the ASR device, new operators will require some form of training. It is shown that a demonstration by an experienced user of the device can lead to superior performance than instructions. Thus, a relatively cheap and very efficient form of operator training can be supplied by demonstration by experienced ASR operators. From a series of studies into speech based interaction with computers, it is concluded that the interaction be designed to capitalise upon the tendency of operators to use short, succinct, task specific styles of speech. From studies comparing different types of feedback, it is concluded that operators be given screen based feedback, rather than auditory feedback, for control room operation. Feedback will take two forms: the use of the ASR device will require recognition feedback, which will be best supplied using text; the performance of a process control task will require task feedback integrated into the mimic display. This latter feedback can be either textual or symbolic, but it is suggested that symbolic feedback will be more beneficial. Related to both interaction style and feedback is the issue of handling recognition errors. These should be corrected by simple command repetition practices, rather than use error handling dialogues. This method of error correction is held to be non intrusive to primary command and control operations. This thesis also addresses some of the problems of user error in ASR use, and provides a number of recommendations for its reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To examine whether objective performance of near tasks is improved with various electronic vision enhancement systems (EVES) compared with the subject's own optical magnifier. DESIGN: Experimental study, randomized, within-patient design. METHODS: This was a prospective study, conducted in a hospital ophthalmology low-vision clinic. The patient population comprised 70 sequential visually impaired subjects. The magnifying devices examined were: patient's optimum optical magnifier; magnification and field-of-view matched mouse EVES with monitor or head-mounted display (HMD) viewing; and stand EVES with monitor viewing. The tasks performed were: reading speed and acuity; time taken to track from one column of print to the next; follow a route map, and locate a specific feature; and identification of specific information from a medicine label. RESULTS: Mouse EVES with HMD viewing caused lower reading speeds than stand EVES with monitor viewing (F = 38.7, P < .001). Reading with the optical magnifier was slower than with the mouse or stand EVES with monitor viewing at smaller print sizes (P < .05). The column location task was faster with the optical magnifier than with any of the EVES (F = 10.3, P < .001). The map tracking and medicine label identification task was slower with the mouse EVES with HMD viewing than with the other magnifiers (P < .01). Previous EVES experience had no effect on task performance (P > .05), but subjects with previous optical magnifier experience were significantly slower at performing the medicine label identification task with all of the EVES (P < .05). CONCLUSIONS: Although EVES provide objective benefits to the visually impaired in reading speed and acuity, together with some specific near tasks, some can be performed just as fast using optical magnification. © 2003 by Elsevier Inc. All rights reserved.