9 resultados para Technical education.
em Aston University Research Archive
Resumo:
This paper focusses on attracting and retaining young people into technical disciplines. It introduces a new model of technical education from age 14 that the UK Government initiated in 2008. A concept of University led Technical Colleges (UTCs) for 14-19 year olds. These state supported schools, sponsored by a University, have technical curricula, technologically enabled learning environments and strong engagement with employers. As new schools they have been able to recruit outstanding staff that are conversant with the use of technology to enhance learning and all students have their own iPads. The Aston University Engineering Academy opened in September 2012 and a recent survey of staff, students and parents has provided both qualitative and quantitative data on the benefits to motivation and learning of these embedded iPads. The devices have also had advantages for the management of data on student achievement from a leadership, teaching staff and parental view point.
Resumo:
This paper investigates the role of entrepreneurs' general and specific human capital on the performance of UK new technology based firms using a resource based approach to the entrepreneurship theory. The effect of entrepreneurial human capital on the performance of NTBFs is investigated using data derived from a survey of 412 firms operating in both high-tech manufacturing and the services sectors. According to the resource based theory it is found that specific human capital is more important for the performance of NTBFs in relation to general. More specifically individual entrepreneurs or entrepreneurial teams with high levels of formal business education, commercial, managerial or same sector experience are found to have created better performing NTBFs. Finally it is found that the performance of a NTBF can improve through the combination of heterogeneous but complementary skills, including, for example, technical education and commercial experience or managerial technical and managerial commercial experience. © 2010 Springer Science+Business Media, LLC.
Resumo:
This paper begins with the argument that within modern-day society, engineering has shifted from being the scientific and technical mainstay of industrial, and more recently digital change to become the most vital driver of future advancement. In order to meet the inevitable challenges resulting from this role, the nature of engineering education is constantly evolving and as such engineering education has to change. The paper argues that what is needed is a fresh approach to engineering education – one that is sufficiently flexible so as to capture the fast-changing needs of engineering education as a discipline, whilst being pedagogically suitable for use with a range of engineering epistemologies. It provides an overview of a case study in which a new approach to engineering education has been developed and evaluated. The approach, which is based on the concept of scholarship, is described in detail. This is followed by a discussion of how the approach has been put into practice and evaluated. The paper concludes by arguing that within today's market-driven university world, the need for effective learning and teaching practice, based in good scholarship, is fundamental to student success.
Resumo:
The study addresses the introduction of an innovation of new technology into a bureaucratic profession. The organisational setting is that of local authority secondary schools at a time at which microcomputers were being introduced in both the organisational core (for teaching) and its periphery (school administration). The research studies innovation-adopting organisations within their sectoral context; key actors influencing the innovation are identified at the levels of central government, local government and schools.A review of the literature on new technology and innovation (including educational innovation), and on schools as organisations in a changing environment leads to the development of the conceptual framework of the study using a resource dependency model within a cycle of the acquisition, allocation and utilisation of financial, physical and intangible resources. The research methodology is longitudinal and draws from both positivist and interpretive traditions. lt includes an initial census of the two hundred secondary schools in four local education authorities, a final survey of the same population, and four case studies, using both interview methods and documentation. Two modes of innovation are discerned. In respect of administrative use a rationalising, controlling mode is identified, with local education authorities developing standardised computer-assisted administrative systems for use in schools. In respect of curricular use, in contrast, teachers have been able to maintain an indeterminate occupational knowledge base, derived from an ideology of professionalism in respect of the classroom use of the technology. The mode of innovation in respect of curricular use has been one of learning and enabling. The resourcing policies of central and local government agencies affect the extent of use of the technology for teaching purposes, but the way in which it is used is determined within individual schools, where staff with relevant technical expertise significantly affect the course of the innovation.
Resumo:
Our paper aims to contribute to the growing body of literature that has suggested that tertiary accounting education should not simply transfer technical/functional/vocational accounting knowledge. This literature suggests that a more critical accounting educational content complemented by a more dialogical teaching approach is more appropriate. Our paper provides further reflections on just such a course and the challenges that this raises. Specifically, it comments on learner resistance and engagement, syllabus design, delivery and assessment methods. In addition, this paper introduces the role that theory, secondary research and debates have played in this course. The value of this type of course, in terms of developing and transforming the learners is discussed.
Resumo:
The UK Government and large employers have recognised the skills gap between learners leaving the education system and the requirements of employers. The current system is seen to be failing significant numbers of learners and has been accused of schooling but not educating our young people. University-led technical colleges are one part of the solution being developed to provide outstanding engineering education. This paper focusses on the learning experience that the Aston University Engineering Academy, the first University-led University Technical College (UTC), has created for entrants to the Engineering Academy in September 2012, when it opens in brand new buildings next to the University. The overall aim is to produce technically literate young people that have business and enterprise skills as well as insight into the diverse range of opportunities in Engineering and Technical disciplines. The project has brought University staff and students together with employers and Academy staff to optimise the engineering education that they will receive. The innovative model presented has drawn on research from across the world in the implementation of this new type of school, as well as educational practices from the USA and the Scandinavian countries. The resulting curriculum is authentic and exciting and expands the University model of problem-based learning and placements into the secondary school environment. The benefits of this close partnership for University staff and students, the employers and the Academy staff are expanded on and the paper concludes with a prediction of progression routes from the Academy.
Resumo:
Design methods and tools are generally best learned and developed experientially [1]. Finding appropriate vehicles for delivering these to students is becoming increasingly challenging, especially when considering only those that will enthuse, intrigue and inspire. This paper traces the development of different eco-car design and build projects which competed in the Shell Eco-Marathon. The cars provided opportunities for experiential learning through a formal learning cycle of CDIO (Conceive, Design, Implement, Operate) or the more traditional understand, explore, create, validate, with both teams developing a functional finished prototype. Lessons learned were applied through the design of a third and fourth eco-car using experimental techniques with bio-composites, combining the knowledge of fibre reinforced composite materials and adhesives with the plywood construction techniques of the two teams. The paper discusses the importance of applying materials and techniques to a real world problem. It will also explore how eco-car and comparing traditional materials and construction techniques with high tech composite materials is an ideal teaching, learning and assessment vehicle for technical design techniques.