23 resultados para Teaching with geospatial technologies
em Aston University Research Archive
Resumo:
This paper presents an assessment of the technical and economic performance of thermal processes to generate electricity from a wood chip feedstock by combustion, gasification and fast pyrolysis. The scope of the work begins with the delivery of a wood chip feedstock at a conversion plant and ends with the supply of electricity to the grid, incorporating wood chip preparation, thermal conversion, and electricity generation in dual fuel diesel engines. Net generating capacities of 1–20 MWe are evaluated. The techno-economic assessment is achieved through the development of a suite of models that are combined to give cost and performance data for the integrated system. The models include feed pretreatment, combustion, atmospheric and pressure gasification, fast pyrolysis with pyrolysis liquid storage and transport (an optional step in de-coupled systems) and diesel engine or turbine power generation. The models calculate system efficiencies, capital costs and production costs. An identical methodology is applied in the development of all the models so that all of the results are directly comparable. The electricity production costs have been calculated for 10th plant systems, indicating the costs that are achievable in the medium term after the high initial costs associated with novel technologies have reduced. The costs converge at the larger scale with the mean electricity price paid in the EU by a large consumer, and there is therefore potential for fast pyrolysis and diesel engine systems to sell electricity directly to large consumers or for on-site generation. However, competition will be fierce at all capacities since electricity production costs vary only slightly between the four biomass to electricity systems that are evaluated. Systems de-coupling is one way that the fast pyrolysis and diesel engine system can distinguish itself from the other conversion technologies. Evaluations in this work show that situations requiring several remote generators are much better served by a large fast pyrolysis plant that supplies fuel to de-coupled diesel engines than by constructing an entire close-coupled system at each generating site. Another advantage of de-coupling is that the fast pyrolysis conversion step and the diesel engine generation step can operate independently, with intermediate storage of the fast pyrolysis liquid fuel, increasing overall reliability. Peak load or seasonal power requirements would also benefit from de-coupling since a small fast pyrolysis plant could operate continuously to produce fuel that is stored for use in the engine on demand. Current electricity production costs for a fast pyrolysis and diesel engine system are 0.091/kWh at 1 MWe when learning effects are included. These systems are handicapped by the typical characteristics of a novel technology: high capital cost, high labour, and low reliability. As such the more established combustion and steam cycle produces lower cost electricity under current conditions. The fast pyrolysis and diesel engine system is a low capital cost option but it also suffers from relatively low system efficiency particularly at high capacities. This low efficiency is the result of a low conversion efficiency of feed energy into the pyrolysis liquid, because of the energy in the char by-product. A sensitivity analysis has highlighted the high impact on electricity production costs of the fast pyrolysis liquids yield. The liquids yield should be set realistically during design, and it should be maintained in practice by careful attention to plant operation and feed quality. Another problem is the high power consumption during feedstock grinding. Efficiencies may be enhanced in ablative fast pyrolysis which can tolerate a chipped feedstock. This has yet to be demonstrated at commercial scale. In summary, the fast pyrolysis and diesel engine system has great potential to generate electricity at a profit in the long term, and at a lower cost than any other biomass to electricity system at small scale. This future viability can only be achieved through the construction of early plant that could, in the short term, be more expensive than the combustion alternative. Profitability in the short term can best be achieved by exploiting niches in the market place and specific features of fast pyrolysis. These include: •countries or regions with fiscal incentives for renewable energy such as premium electricity prices or capital grants; •locations with high electricity prices so that electricity can be sold direct to large consumers or generated on-site by companies who wish to reduce their consumption from the grid; •waste disposal opportunities where feedstocks can attract a gate fee rather than incur a cost; •the ability to store fast pyrolysis liquids as a buffer against shutdowns or as a fuel for peak-load generating plant; •de-coupling opportunities where a large, single pyrolysis plant supplies fuel to several small and remote generators; •small-scale combined heat and power opportunities; •sales of the excess char, although a market has yet to be established for this by-product; and •potential co-production of speciality chemicals and fuel for power generation in fast pyrolysis systems.
Resumo:
Purpose: To compare monochromatic aberrations of keratoconic eyes when uncorrected, corrected with spherically-powered RGP (rigid gas-permeable) contact lenses and corrected using simulations of customised soft contact lenses for different magnitudes of rotation (up to 15°) and translation (up to 1mm) from their ideal position. Methods: The ocular aberrations of examples of mild, moderate and severe keratoconic eyes were measured when uncorrected and when wearing their habitual RGP lenses. Residual aberrations and point-spread functions of each eye were simulated using an ideal, customised soft contact lens (designed to neutralise higher-order aberrations, HOA) were calculated as a function of the angle of rotation of the lens from its ideal orientation, and its horizontal and vertical translation. Results: In agreement with the results of other authors, the RGP lenses markedly reduced both lower-order aberrations and HOA for all three patients. When compared with the RGP lens corrections, the customised lens simulations only provided optical improvements if their movements were constrained within limits which appear to be difficult to achieve with current technologies. Conclusions: At the present time, customised contact lens corrections appear likely to offer, at best, only minor optical improvements over RGP lenses for patients with keratoconus. If made in soft materials, however, these lenses may be preferred by patients in term of comfort. © 2012 The College of Optometrists.
Resumo:
Increased global uptake of entertainment gaming has the potential to lead to high expectations of engagement and interactivity from users of technology-enhanced learning environments. Blended approaches to implementing game-based learning as part of distance or technology-enhanced education have led to demonstrations of the benefits they might bring, allowing learners to interact with immersive technologies as part of a broader, structured learning experience. In this article, we explore how the integration of a serious game can be extended to a learning content management system (LCMS) to support a blended and holistic approach, described as an 'intuitive-guided' method. Through a case study within the EU-Funded Adaptive Learning via Intuitive/Interactive, Collaborative and Emotional Systems (ALICE) project, a technical integration of a gaming engine with a proprietary LCMS is demonstrated, building upon earlier work and demonstrating how this approach might be realized. In particular, how this method can support an intuitive-guided approach to learning is considered, whereby the learner is given the potential to explore a non-linear environment whilst scaffolding and blending provide guidance ensuring targeted learning objectives are met. Through an evaluation of the developed prototype with 32 students aged 14-16 across two Italian schools, a varied response from learners is observed, coupled with a positive reception from tutors. The study demonstrates that challenges remain in providing high-fidelity content in a classroom environment, particularly as an increasing gap in technology availability between leisure and school times emerges.
Resumo:
Integration of renewable energy with desalination technologies has emerged as an attractive solution to augment fresh water supply sustainably. Fouling and scaling are still considered as limiting factors in membrane desalination processes. For brackish water treatment, pre-treatment of reverse osmosis (RO) feed water is a key step in designing RO plants avoiding membrane fouling. This study aims to compare at pilot scale the rejection efficiency of RO membranes with multiple pre-treatment options at different water recoveries (30, 35, 40, 45 and 50%) and TDS concentrations (3500, 4000, and 4500mg/L). Synthetic brackish water was prepared and performance evaluation were carried out using brackish water reverse osmosis (BWRO) membranes (Filmtec LC-LE-4040 and Hydranautics CPA5-LD-4040) preceded by 5 and 1μm cartridge filters, 0.02μm ultra-filtration (UF) membrane, and forward osmosis (FO) membrane using 0.25M NaCl and MgCl2 as draw solutions (DS). It was revealed that FO membrane with 0.25M MgCl2 used as a draw solution (DS) and Ultra-filtration (UF) membrane followed by Filmtec membrane gave overall 98% rejection but UF facing high fouling potential due to high applied pressure. Use of 5 and 1μm cartridge filter prior to Filmtec membrane also showed effective results with 95% salt rejection.
Resumo:
As mobile devices become increasingly diverse and continue to shrink in size and weight, their portability is enhanced but, unfortunately, their usability tends to suffer. Ultimately, the usability of mobile technologies determines their future success in terms of end-user acceptance and, thereafter, adoption and social impact. Widespread acceptance will not, however, be achieved if users’ interaction with mobile technology amounts to a negative experience. Mobile user interfaces need to be designed to meet the functional and sensory needs of users. Social and Organizational Impacts of Emerging Mobile Devices: Evaluating Use focuses on human-computer interaction related to the innovation and research in the design, evaluation, and use of innovative handheld, mobile, and wearable technologies in order to broaden the overall body of knowledge regarding such issues. It aims to provide an international forum for researchers, educators, and practitioners to advance knowledge and practice in all facets of design and evaluation of human interaction with mobile technologies.
Resumo:
Mobile technology has been one of the major growth areas in computing over recent years (Urbaczewski, Valacich, & Jessup, 2003). Mobile devices are becoming increasingly diverse and are continuing to shrink in size and weight. Although this increases the portability of such devices, their usability tends to suffer. Fuelled almost entirely by lack of usability, users report high levels of frustration regarding interaction with mobile technologies (Venkatesh, Ramesh, & Massey, 2003). This will only worsen if interaction design for mobile technologies does not continue to receive increasing research attention. For the commercial benefit of mobility and mobile commerce (m-commerce) to be fully realized, users’ interaction experiences with mobile technology cannot be negative. To ensure this, it is imperative that we design the right types of mobile interaction (m-interaction); an important prerequisite for this is ensuring that users’ experience meets both their sensory and functional needs (Venkatesh, Ramesh, & Massey, 2003). Given the resource disparity between mobile and desktop technologies, successful electronic commerce (e-commerce) interface design and evaluation does not necessarily equate to successful m-commerce design and evaluation. It is, therefore, imperative that the specific needs of m-commerce are addressed–both in terms of design and evaluation. This chapter begins by exploring the complexities of designing interaction for mobile technology, highlighting the effect of context on the use of such technology. It then goes on to discuss how interaction design for mobile devices might evolve, introducing alternative interaction modalities that are likely to affect that future evolution. It is impossible, within a single chapter, to consider each and every potential mechanism for interacting with mobile technologies; to provide a forward-looking flavor of what might be possible, this chapter focuses on some more novel methods of interaction and does not, therefore, look at the typical keyboard and visual display-based interaction which, in essence, stem from the desktop interaction design paradigm. Finally, this chapter touches on issues associated with effective evaluation of m-interaction and mobile application designs. By highlighting some of the issues and possibilities for novel m-interaction design and evaluation, we hope that future designers will be encouraged to “think out of the box” in terms of their designs and evaluation strategies.
Resumo:
Recent research has highlighted several job characteristics salient to employee well-being and behavior for which there are no adequate generally applicable measures. These include timing and method control, monitoring and problem-solving demand, and production responsibility. In this article, an attempt to develop measures of these constructs provided encouraging results. Confirmatory factor analyses applied to data from 2 samples of shop-floor employees showed a consistent fit to a common 5-factor measurement model. Scales corresponding to each of the dimensions showed satisfactory internal and test–retest reliabilities. As expected, the scales also discriminated between employees in different jobs and employees working with contrasting technologies.
Resumo:
As a new medium for questionnaire delivery, the internet has the potential to revolutionise the survey process. Online (web-based) questionnaires provide several advantages over traditional survey methods in terms of cost, speed, appearance, flexibility, functionality, and usability [1, 2]. For instance, delivery is faster, responses are received more quickly, and data collection can be automated or accelerated [1- 3]. Online-questionnaires can also provide many capabilities not found in traditional paper-based questionnaires: they can include pop-up instructions and error messages; they can incorporate links; and it is possible to encode difficult skip patterns making such patterns virtually invisible to respondents. Like many new technologies, however, online-questionnaires face criticism despite their advantages. Typically, such criticisms focus on the vulnerability of online-questionnaires to the four standard survey error types: namely, coverage, non-response, sampling, and measurement errors. Although, like all survey errors, coverage error (“the result of not allowing all members of the survey population to have an equal or nonzero chance of being sampled for participation in a survey” [2, pg. 9]) also affects traditional survey methods, it is currently exacerbated in online-questionnaires as a result of the digital divide. That said, many developed countries have reported substantial increases in computer and internet access and/or are targeting this as part of their immediate infrastructural development [4, 5]. Indicating that familiarity with information technologies is increasing, these trends suggest that coverage error will rapidly diminish to an acceptable level (for the developed world at least) in the near future, and in so doing, positively reinforce the advantages of online-questionnaire delivery. The second error type – the non-response error – occurs when individuals fail to respond to the invitation to participate in a survey or abandon a questionnaire before it is completed. Given today’s societal trend towards self-administration [2] the former is inevitable, irrespective of delivery mechanism. Conversely, non-response as a consequence of questionnaire abandonment can be relatively easily addressed. Unlike traditional questionnaires, the delivery mechanism for online-questionnaires makes estimation of questionnaire length and time required for completion difficult1, thus increasing the likelihood of abandonment. By incorporating a range of features into the design of an online questionnaire, it is possible to facilitate such estimation – and indeed, to provide respondents with context sensitive assistance during the response process – and thereby reduce abandonment while eliciting feelings of accomplishment [6]. For online-questionnaires, sampling error (“the result of attempting to survey only some, and not all, of the units in the survey population” [2, pg. 9]) can arise when all but a small portion of the anticipated respondent set is alienated (and so fails to respond) as a result of, for example, disregard for varying connection speeds, bandwidth limitations, browser configurations, monitors, hardware, and user requirements during the questionnaire design process. Similarly, measurement errors (“the result of poor question wording or questions being presented in such a way that inaccurate or uninterpretable answers are obtained” [2, pg. 11]) will lead to respondents becoming confused and frustrated. Sampling, measurement, and non-response errors are likely to occur when an online-questionnaire is poorly designed. Individuals will answer questions incorrectly, abandon questionnaires, and may ultimately refuse to participate in future surveys; thus, the benefit of online questionnaire delivery will not be fully realized. To prevent errors of this kind2, and their consequences, it is extremely important that practical, comprehensive guidelines exist for the design of online questionnaires. Many design guidelines exist for paper-based questionnaire design (e.g. [7-14]); the same is not true for the design of online questionnaires [2, 15, 16]. The research presented in this paper is a first attempt to address this discrepancy. Section 2 describes the derivation of a comprehensive set of guidelines for the design of online-questionnaires and briefly (given space restrictions) outlines the essence of the guidelines themselves. Although online-questionnaires reduce traditional delivery costs (e.g. paper, mail out, and data entry), set up costs can be high given the need to either adopt and acquire training in questionnaire development software or secure the services of a web developer. Neither approach, however, guarantees a good questionnaire (often because the person designing the questionnaire lacks relevant knowledge in questionnaire design). Drawing on existing software evaluation techniques [17, 18], we assessed the extent to which current questionnaire development applications support our guidelines; Section 3 describes the framework used for the evaluation, and Section 4 discusses our findings. Finally, Section 5 concludes with a discussion of further work.
Resumo:
Bio energy is a renewable energy and a solution to the depleting fossil fuels. Bio energy such as heat, power and bio fuel is generated by conversion technologies using biomass for example domestic waste, root crops, forest residue and animal slurry. Pyrolysis, anaerobic digestion and combined heat and power engine are some examples of the technologies. Depending on the nature of a biomass, it can be treated with various technologies giving out some products, which can be further treated with other technologies and eventually converted into the final products as bio energy. The pathway followed by the biomass, technologies, intermediate products and bio energy in the conversion process is referred to as bio energy pathway. Identification of appropriate pathways optimizes the conversion process. Although there are various approaches to create or generate the pathways, there is still a need for a semantic approach to generate the pathways, which allow checking the consistency of the knowledge, and to share and extend the knowledge efficiently. This paper presents an ontology-based approach to automatic generation of the pathways for biomass to bio energy conversion, which exploits the definition and hierarchical structure of the biomass and technologies, their relationship and associated properties, and infers appropriate pathways. A case study has been carried out in a real-life scenario, the bio energy project for the North West of Europe (Bioen NW), which showed promising results.
Resumo:
Introduction: Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Areas covered: Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Expert opinion: Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.
Resumo:
Dementia is one of the greatest contemporary health and social care challenges, and novel approaches to the care of its sufferers are needed. New information and communication technologies (ICT) have the potential to assist those caring for people with dementia, through access to networked information and support, tracking and surveillance. This article reports the views about such new technologies of 34 carers of people with dementia. We also held a group discussion with nine carers for respondent validation. The carers' actual use of new ICT was limited, although they thought a gradual increase in the use of networked technology in dementia care was inevitable but would bypass some carers who saw themselves as too old. Carers expressed a general enthusiasm for the benefits of ICT, but usually not for themselves, and they identified several key challenges including: establishing an appropriate balance between, on the one hand, privacy and autonomy and, on the other: maximising safety; establishing responsibility for and ownership of the equipment and who bears the costs; the possibility that technological help would mean a loss of valued personal contact; and the possibility that technology would substitute for existing services rather than be complementary. For carers and dementia sufferers to be supported, the expanding use of these technologies should be accompanied by intensive debate of the associated issues.