39 resultados para Task-Based Instruction (TBI)
em Aston University Research Archive
Resumo:
Continuing advances in digital image capture and storage are resulting in a proliferation of imagery and associated problems of information overload in image domains. In this work we present a framework that supports image management using an interactive approach that captures and reuses task-based contextual information. Our framework models the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. During image analysis, interactions are captured and a task context is dynamically constructed so that human expertise, proficiency and knowledge can be leveraged to support other users in carrying out similar domain tasks using case-based reasoning techniques. In this article we present our framework for capturing task context and describe how we have implemented the framework as two image retrieval applications in the geo-spatial and medical domains. We present an evaluation that tests the efficiency of our algorithms for retrieving image context information and the effectiveness of the framework for carrying out goal-directed image tasks. © 2010 Springer Science+Business Media, LLC.
Resumo:
In order to address problems of information overload in digital imagery task domains we have developed an interactive approach to the capture and reuse of image context information. Our framework models different aspects of the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. The approach allows us to gauge a measure of a user's intentions as they complete goal-directed image tasks. As users analyze retrieved imagery their interactions are captured and an expert task context is dynamically constructed. This human expertise, proficiency, and knowledge can then be leveraged to support other users in carrying out similar domain tasks. We have applied our techniques to two multimedia retrieval applications for two different image domains, namely the geo-spatial and medical imagery domains. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Teaching Speaking A Holistic Approach brings together theoretical and pedagogical perspectives on teaching speaking within a coherent methodological framework. The framework combines understandings derived from several areas of speaking research and instruction including cognitive and affective processes, oracy for thinking and learning communicative competence, discourse theories, task-based language learning, and self-regulated learning. By explaining, interpreting, evaluating, and synthesizing these diverse perspectives from linguistics and language learning, the text offers a comprehensive and versatile approach for teaching speaking. Samples of authentic classroom data are used for illustrating important concepts to help readers see how theoretical perspectives can be applied in practice. It also includes a pedagogical model for sequencing learning activities with concrete guidelines on planning and conducting speaking lessons. Different types of learning tasks are explained and illustrated with examples, and each chapter includes short tasks and ends with a number of tasks that enable readers to extend their ideas.
Resumo:
This paper presents the design and results of a task-based user study, based on Information Foraging Theory, on a novel user interaction framework - uInteract - for content-based image retrieval (CBIR). The framework includes a four-factor user interaction model and an interactive interface. The user study involves three focused evaluations, 12 simulated real life search tasks with different complexity levels, 12 comparative systems and 50 subjects. Information Foraging Theory is applied to the user study design and the quantitative data analysis. The systematic findings have not only shown how effective and easy to use the uInteract framework is, but also illustrate the value of Information Foraging Theory for interpreting user interaction with CBIR. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
The paper proposes an ISE (Information goal, Search strategy, Evaluation threshold) user classification model based on Information Foraging Theory for understanding user interaction with content-based image retrieval (CBIR). The proposed model is verified by a multiple linear regression analysis based on 50 users' interaction features collected from a task-based user study of interactive CBIR systems. To our best knowledge, this is the first principled user classification model in CBIR verified by a formal and systematic qualitative analysis of extensive user interaction data. Copyright 2010 ACM.
Resumo:
The realization of the Semantic Web is constrained by a knowledge acquisition bottleneck, i.e. the problem of how to add RDF mark-up to the millions of ordinary web pages that already exist. Information Extraction (IE) has been proposed as a solution to the annotation bottleneck. In the task based evaluation reported here, we compared the performance of users without access to annotation, users working with annotations which had been produced from manually constructed knowledge bases, and users working with annotations augmented using IE. We looked at retrieval performance, overlap between retrieved items and the two sets of annotations, and usage of annotation options. Automatically generated annotations were found to add value to the browsing experience in the scenario investigated. Copyright 2005 ACM.
Resumo:
Wikis are quickly emerging as a new corporate medium for communication and collaboration. They allow dispersed groups of collaborators to asynchronously engage in persistent conversations, the result of which is stored on a common server as a single, shared truth. To gauge the enterprise value of wikis, the authors draw on Media Choice Theories (MCTs) as an evaluation framework. MCTs reveal core capabilities of communication media and their fit with the communication task. Based on the evaluation, the authors argue that wikis are equivalent or superior to existing asynchronous communication media in key characteristics. Additionally argued is the notion that wiki technology challenges some of the held beliefs of existing media choice theories, as wikis introduce media characteristics not previously envisioned. The authors thus predict a promising future for wiki use in enterprises.
Resumo:
Improved clinical care for Bipolar Disorder (BD) relies on the identification of diagnostic markers that can reliably detect disease-related signals in clinically heterogeneous populations. At the very least, diagnostic markers should be able to differentiate patients with BD from healthy individuals and from individuals at familial risk for BD who either remain well or develop other psychopathology, most commonly Major Depressive Disorder (MDD). These issues are particularly pertinent to the development of translational applications of neuroimaging as they represent challenges for which clinical observation alone is insufficient. We therefore applied pattern classification to task-based functional magnetic resonance imaging (fMRI) data of the n-back working memory task, to test their predictive value in differentiating patients with BD (n=30) from healthy individuals (n=30) and from patients' relatives who were either diagnosed with MDD (n=30) or were free of any personal lifetime history of psychopathology (n=30). Diagnostic stability in these groups was confirmed with 4-year prospective follow-up. Task-based activation patterns from the fMRI data were analyzed with Gaussian Process Classifiers (GPC), a machine learning approach to detecting multivariate patterns in neuroimaging datasets. Consistent significant classification results were only obtained using data from the 3-back versus 0-back contrast. Using contrast, patients with BD were correctly classified compared to unrelated healthy individuals with an accuracy of 83.5%, sensitivity of 84.6% and specificity of 92.3%. Classification accuracy, sensitivity and specificity when comparing patients with BD to their relatives with MDD, were respectively 73.1%, 53.9% and 94.5%. Classification accuracy, sensitivity and specificity when comparing patients with BD to their healthy relatives were respectively 81.8%, 72.7% and 90.9%. We show that significant individual classification can be achieved using whole brain pattern analysis of task-based working memory fMRI data. The high accuracy and specificity achieved by all three classifiers suggest that multivariate pattern recognition analyses can aid clinicians in the clinical care of BD in situations of true clinical uncertainty regarding the diagnosis and prognosis.
Resumo:
Multi-agent algorithms inspired by the division of labour in social insects and by markets, are applied to a constrained problem of distributed task allocation. The efficiency (average number of tasks performed), the flexibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved efficiency and robustness. We employ nature inspired particle swarm optimisation to obtain optimised parameters for all algorithms in a range of representative environments. Although results are obtained for large population sizes to avoid finite size effects, the influence of population size on the performance is also analysed. From a theoretical point of view, we analyse the causes of efficiency loss, derive theoretical upper bounds for the efficiency, and compare these with the experimental results.
Resumo:
Listening is typically the first language skill to develop in first language (L1) users and has been recognized as a basic and fundamental tool for communication. Despite the importance of listening, aural abilities are often taken for granted, and many people overlook their dependency on listening and the complexities that combine to enable this multi-faceted skill. When second language (L2) students are learning their new language, listening is crucial, as it provides access to oral input and facilitates social interaction. Yet L2 students find listening challenging, and L2 teachers often lack sufficient pedagogy to help learners develop listening abilities that they can use in and beyond the classroom. In an effort to provide a pedagogic alternative to more traditional and limited L2 listening instruction, this thesis investigated the viability of listening strategy instruction (LSI) over three semesters at a private university in Japan through a qualitative action research (AR) intervention. An LSI program was planned and implemented with six classes over the course of three AR phases. Two teachers used the LSI with 121 learners throughout the project. Following each AR phase, student and teacher perceptions of the methodology were investigated via questionnaires and interviews, which were primary data collection methods. Secondary research methods (class observations, pre/post-semester test scores, and a research journal) supplemented the primary methods. Data were analyzed and triangulated for emerging themes related to participants’ perceptions of LSI and the viability thereof. These data showed consistent positive perceptions of LSI on the parts of both learners and teachers, although some aspects of LSI required additional refinement. This project provided insights on LSI specific to the university context in Japan and also produced principles for LSI program planning and implementation that can inform the broader L2 education community.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
Innovation is part and parcel of any service in today's environment, so as to remain competitive. Quality improvement in healthcare services is a complex, multi-dimensional task. This study proposes innovation management in healthcare services using a logical framework. A problem tree and an objective tree are developed to identify and mitigate issues and concerns. A logical framework is formulated to develop a plan for implementation and monitoring strategies, potentially creating an environment for continuous quality improvement in a specific unit. We recommend logical framework as a valuable model for innovation management in healthcare services. Copyright © 2006 Inderscience Enterprises Ltd.
Resumo:
People and their performance are key to an organization's effectiveness. This review describes an evidence-based framework of the links between some key organizational influences and staff performance, health and well-being. This preliminary framework integrates management and psychological approaches, with the aim of assisting future explanation, prediction and organizational change. Health care is taken as the focus of this review, as there are concerns internationally about health care effectiveness. The framework considers empirical evidence for links between the following organizational levels: 1. Context (organizational culture and inter-group relations; resources, including staffing; physical environment) 2. People management (HRM practices and strategies; job design, workload and teamwork; employee involvement and control over work; leadership and support) 3. Psychological consequences for employees (health and stress; satisfaction and commitment; knowledge, skills and motivation) 4. Employee behaviour (absenteeism and turnover; task and contextual performance; errors and near misses) 5. Organizational performance; patient care. This review contributes to an evidence base for policies and practices of people management and performance management. Its usefulness will depend on future empirical research, using appropriate research designs, sufficient study power and measures that are reliable and valid.
Resumo:
Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection.