3 resultados para Taguchi Method

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface quality is important in engineering and a vital aspect of it is surface roughness, since it plays an important role in wear resistance, ductility, tensile, and fatigue strength for machined parts. This paper reports on a research study on the development of a geometrical model for surface roughness prediction when face milling with square inserts. The model is based on a geometrical analysis of the recreation of the tool trail left on the machined surface. The model has been validated with experimental data obtained for high speed milling of aluminum alloy (Al 7075-T7351) when using a wide range of cutting speed, feed per tooth, axial depth of cut and different values of tool nose radius (0.8. mm and 2.5. mm), using the Taguchi method as the design of experiments. The experimental roughness was obtained by measuring the surface roughness of the milled surfaces with a non-contact profilometer. The developed model can be used for any combination of material workpiece and tool, when tool flank wear is not considered and is suitable for using any tool diameter with any number of teeth and tool nose radius. The results show that the developed model achieved an excellent performance with almost 98% accuracy in terms of predicting the surface roughness when compared to the experimental data. © 2014 The Society of Manufacturing Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tool life is an important factor to be considered during the optimisation of a machining process since cutting parameters can be adjusted to optimise tool changing, reducing cost and time of production. Also the performance of a tool is directly linked to the generated surface roughness and this is important in cases where there are strict surface quality requirements. The prediction of tool life and the resulting surface roughness in milling operations has attracted considerable research efforts. The research reported herein is focused on defining the influence of milling cutting parameters such as cutting speed, feed rate and axial depth of cut, on three major tool performance parameters namely, tool life, material removal and surface roughness. The research is seeking to define methods that will allow the selection of optimal parameters for best tool performance when face milling 416 stainless steel bars. For this study the Taguchi method was applied in a special design of an orthogonal array that allows studying the entire parameter space with only a number of experiments representing savings in cost and time of experiments. The findings were that the cutting speed has the most influence on tool life and surface roughness and very limited influence on material removal. By last tool life can be judged either from tool life or volume of material removal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During a machining process, cutting parameters must be taken into account, since depending on them the cutting edge starts to wear out to the point that tool can fail and needs to be change, which increases the cost and time of production. Since wear is a negative phenomenon on the cutting tool, due to the fact that tool life is reduced, it is important to optimize the cutting variables to be used during the machining process, in order to increase tool life. This research is focused on the influence of cutting parameters such as cutting speed, feed per tooth and axial depth of cut on tool wear during a face milling operation. The Taguchi method is applied in this study, since it uses a special design of orthogonal array to study the entire parameters space, with only few numbers of experiments. Also a relationship between tool wear and the cutting parameters is presented. For the studies, a martensitic 416 stainless steel was selected, due to the importance of this material in the machining of valve parts and pump shafts. Copyright © 2009 by ASME.